Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Paucar, R., (2023). On the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applications [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/27184
Paucar, R., On the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applications [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/27184
@phdthesis{renati/712954,
title = "On the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applications",
author = "Paucar Rojas, Rina Roxana",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
Title: On the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applications
Authors(s): Paucar Rojas, Rina Roxana
Advisor(s): Palacios Baldeón, Joe Albino
Keywords: Núcleo del homomorfismo de Gysin; Teorema sobre 0-ciclos; Conjetura de Bloch; Curvas ciclo constantes
OCDE field: http://purl.org/pe-repo/ocde/ford#1.01.02
Issue Date: 2023
Institution: Universidad Nacional de Ingeniería
Abstract: Sea S una superficie suave, proyectiva y conexa sobre C. Sea £ el sistema lineal completo de un divisor muy amplio D en S y sea d = dim(£). Para cualquier punto cerrado t e £ = Pd*, sea Ht el hiperplano en Pd correspondiente a t, Ct = Ht n S la correspondiente sección hiperplana de S, y rt el embebimiento cerrado de Ct en S. Sea As el lugar discriminante de £ parametrizando secciones hiperplanas singulares de S y U = £ \ As su complemento parametrizando secciones hiperplanas suaves de S. Sean CHo(S)deg=o y CH0(Ct)deg=0 los grupos de Chow de 0-ciclos de grado cero en S y Ct respectivamente. En esta tesis probamos que para Ct una seccion hiperplana suave de S el Gysin kernel, i.e., el kernel del Gysin homomorfismo de CH0(Ct)deg=0 a CH0(S)deg=0 inducida por rt, es una union contable de trasladados de una subvariedad abeliana At contenida en el Jacobiano Jt de la curva Ct. Luego probamos que existe un subconjunto c-abierto U0 en U tal que At = 0, para todo t e U0, o At = Bt, para
todo t e U0, donde Bt es una subvariedad abeliana de Jt. Finalmente, probamos que si estamos en el caso donde As es una hipersuperficie, para todo t e U tenemos que At = 0 o At = Bt.
Como una aplicación del resultado principal de la tesis probamos un teorema sobre 0-ciclos en superficies y estudiamos la conexión de este teorema con la conjetura de Bloch y con la noción de curvas ciclo constantes.
Let S be a connected smooth projective surface over C. Let £ be the complete linear system of a very ample divisor D on S and let d = dim(£). For any closed point t G £ = Pd*, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht n S the corresponding hyperplane section of S, and rt the closed embedding of Ct into S. Let AS be the discriminant locus of £ parametrizing singular hyperplane sections of S and U = £ \ AS its complement of smooth hyperplane sections of S. Let CH0(S)deg=0 and CHo(Ct)deg=o be the Chow groups of 0-cycles of degree zero of S and Ct respectively. In this thesis we prove that for Ct a smooth hyperplane section of S the Gysin kernel, i.e., the kernel of the Gysin homomorphism from CH0(Ct)deg=0 to CH0(S)deg=0 induced by rt, is a countable union of translates of an abelian subvariety At inside the Jacobian Jt of the curve Ct. Then we prove that there is a c-open subset U0 in U such that At = 0, for all t G U0, or At = Bt, for all t G U0; where Bt is an abelian subvariety of Jt. Finally, we prove that if we are in the case where AS is an hypersurface, then At = 0 or At = Bt, for every t G U. As an application of the main result of the thesis we prove a theorem on 0-cycles on surfaces and we study the connection of this theorem with Bloch’s conjecture and constant cycles curves.
Let S be a connected smooth projective surface over C. Let £ be the complete linear system of a very ample divisor D on S and let d = dim(£). For any closed point t G £ = Pd*, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht n S the corresponding hyperplane section of S, and rt the closed embedding of Ct into S. Let AS be the discriminant locus of £ parametrizing singular hyperplane sections of S and U = £ \ AS its complement of smooth hyperplane sections of S. Let CH0(S)deg=0 and CHo(Ct)deg=o be the Chow groups of 0-cycles of degree zero of S and Ct respectively. In this thesis we prove that for Ct a smooth hyperplane section of S the Gysin kernel, i.e., the kernel of the Gysin homomorphism from CH0(Ct)deg=0 to CH0(S)deg=0 induced by rt, is a countable union of translates of an abelian subvariety At inside the Jacobian Jt of the curve Ct. Then we prove that there is a c-open subset U0 in U such that At = 0, for all t G U0, or At = Bt, for all t G U0; where Bt is an abelian subvariety of Jt. Finally, we prove that if we are in the case where AS is an hypersurface, then At = 0 or At = Bt, for every t G U. As an application of the main result of the thesis we prove a theorem on 0-cycles on surfaces and we study the connection of this theorem with Bloch’s conjecture and constant cycles curves.
Link to repository: http://hdl.handle.net/20.500.14076/27184
Discipline: Doctorado en Ciencias con Mención en Matemática
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado
Grade or title: Doctor en Ciencias con Mención en Matemática
Juror: Guletskii, Vladimir; Huybrechts, Daniel; Ochoa Jiménez, Rosendo; Metzger Alván, Roger Javier
Register date: 1-Jun-2024
This item is licensed under a Creative Commons License