Look-up in Google Scholar
Title: On the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applications
OCDE field: http://purl.org/pe-repo/ocde/ford#1.01.02
Issue Date: 2023
Institution: Universidad Nacional de Ingeniería
Abstract: Sea S una superficie suave, proyectiva y conexa sobre C. Sea £ el sistema lineal completo de un divisor muy amplio D en S y sea d = dim(£). Para cualquier punto cerrado t e £ = Pd*, sea Ht el hiperplano en Pd correspondiente a t, Ct = Ht n S la correspondiente sección hiperplana de S, y rt el embebimiento cerrado de Ct en S. Sea As el lugar discriminante de £ parametrizando secciones hiperplanas singulares de S y U = £ \ As su complemento parametrizando secciones hiperplanas suaves de S. Sean CHo(S)deg=o y CH0(Ct)deg=0 los grupos de Chow de 0-ciclos de grado cero en S y Ct respectivamente. En esta tesis probamos que para Ct una seccion hiperplana suave de S el Gysin kernel, i.e., el kernel del Gysin homomorfismo de CH0(Ct)deg=0 a CH0(S)deg=0 inducida por rt, es una union contable de trasladados de una subvariedad abeliana At contenida en el Jacobiano Jt de la curva Ct. Luego probamos que existe un subconjunto c-abierto U0 en U tal que At = 0, para todo t e U0, o At = Bt, para todo t e U0, donde Bt es una subvariedad abeliana de Jt. Finalmente, probamos que si estamos en el caso donde As es una hipersuperficie, para todo t e U tenemos que At = 0 o At = Bt. Como una aplicación del resultado principal de la tesis probamos un teorema sobre 0-ciclos en superficies y estudiamos la conexión de este teorema con la conjetura de Bloch y con la noción de curvas ciclo constantes.

Let S be a connected smooth projective surface over C. Let £ be the complete linear system of a very ample divisor D on S and let d = dim(£). For any closed point t G £ = Pd*, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht n S the corresponding hyperplane section of S, and rt the closed embedding of Ct into S. Let AS be the discriminant locus of £ parametrizing singular hyperplane sections of S and U = £ \ AS its complement of smooth hyperplane sections of S. Let CH0(S)deg=0 and CHo(Ct)deg=o be the Chow groups of 0-cycles of degree zero of S and Ct respectively. In this thesis we prove that for Ct a smooth hyperplane section of S the Gysin kernel, i.e., the kernel of the Gysin homomorphism from CH0(Ct)deg=0 to CH0(S)deg=0 induced by rt, is a countable union of translates of an abelian subvariety At inside the Jacobian Jt of the curve Ct. Then we prove that there is a c-open subset U0 in U such that At = 0, for all t G U0, or At = Bt, for all t G U0; where Bt is an abelian subvariety of Jt. Finally, we prove that if we are in the case where AS is an hypersurface, then At = 0 or At = Bt, for every t G U. As an application of the main result of the thesis we prove a theorem on 0-cycles on surfaces and we study the connection of this theorem with Bloch’s conjecture and constant cycles curves.
Discipline: Doctorado en Ciencias con Mención en Matemática
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado
Grade or title: Doctor en Ciencias con Mención en Matemática
Juror: Guletskii, Vladimir; Huybrechts, Daniel; Ochoa Jiménez, Rosendo; Metzger Alván, Roger Javier
Register date: 1-Jun-2024



This item is licensed under a Creative Commons License Creative Commons