Bibliographic citations
Castro, J., (2023). Estimación del potencial gradiente térmico en el océano Pacífico Peruano para la generación de energía térmica oceánica (OTEC) [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/26607
Castro, J., Estimación del potencial gradiente térmico en el océano Pacífico Peruano para la generación de energía térmica oceánica (OTEC) [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/26607
@misc{renati/712680,
title = "Estimación del potencial gradiente térmico en el océano Pacífico Peruano para la generación de energía térmica oceánica (OTEC)",
author = "Castro Aparicio, Jhon Brayan",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
In Peru, the thermoelectric source represents 54.25% of the energy matrix, so carbon dioxide emissions represent a problem on the planet and therefore in the country because carbon dioxide represents one of the main greenhouse gases that contribute to global warming, hence the need to implement renewable energies in the energy matrix as a solution. Likewise, it is proposed to increase by 10% the use of non-common renewable energies in Peru. For these reasons, the temperature gradient that exists in the oceans was lost as a non-common renewable energy that could be used by Peru. The proposed renewable energy is called “Ocean Thermal Energy“, which takes advantage of the unevenness of temperature in the ocean to produce electrical energy and to desalinate seawater. From the collection of data from the Peruvian Sea Institute, simulations were carried out in the Tumbes region since this area has the characteristic of exceeding 27°C, thereby evaluating the lifetime of the plant, the consumption of pumps, the energy potential, plant efficiency and economic evaluation. As a general result of the simulations of the energy potential of the Oceanic Thermal Power plant in the Tumbes region, it was determined that the system proposed in this study responds to the needs of the evolution towards a model with less dependence on fossil generation and that the Simulation 31 is considered the optimal one (z=1000, z'=100 and summer season), for which the consumption of pumps is 1,834 MW, the thermal efficiency H= 3.7809%, the function Y = 10,090 US$/ W and an LCOE = 0.1657 US$/kWh.
This item is licensed under a Creative Commons License