Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Valdivia, J., (2023). Extensiones en álgebras Jacobianas [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/25804
Valdivia, J., Extensiones en álgebras Jacobianas [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/25804
@misc{renati/712638,
title = "Extensiones en álgebras Jacobianas",
author = "Valdivia Fuentes, Juan Daniel",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
Title: Extensiones en álgebras Jacobianas
Authors(s): Valdivia Fuentes, Juan Daniel
Advisor(s): Mas Huamán, Ronald Jesús
Keywords: Álgebra Jacobiana; Carcajes con potenciales
OCDE field: http://purl.org/pe-repo/ocde/ford#1.01.01
Issue Date: 2023
Institution: Universidad Nacional de Ingeniería
Abstract: El objetivo del presente trabajo es poder construir secuencias exactas cortas no separadas dentro del álgebra Jacobiana asociada a una superficie.
En el capítulo I introducimos el concepto de carcajes con potenciales, estos nos permitirían definir el concepto del álgebra Jacobiana. En el capítulo II repasamos el concepto de superficies marcadas, así como el de triangulaciones y los carcajes asociados a estas. Definimos un potencial para los carcajes de este tipo y presentamos algunos resultados referentes al álgebra Jacobiana asociada a este tipo de carcajes.
En el capítulo III introducimos la herramienta combinatoria que nos ayudar a durante todo el trabajo: grafos serpientes. Se presenta la definición general de estos tipos de grafos y además como podemos asociar a una triangulación un grafo serpiente. Se define la superposición y cruce de estos grafos y se muestra la relación que estas operaciones tienen con nuestros arcos en la superficie.
En el capítulo IV definimos el concepto de cadenas y módulo cadenas. Estos serían elementos del álgebra Jacobiana que nos permitirán encontrar las secuencias exactas mencionadas al inicio. Además, establecemos una biyección entre los arcos y las cadenas.
En el capítulo V establecemos la relación que hay entre suavizar curvas y los módulos cadena, así como la caracterización de secuencias exactas cortas usando el cruce de módulos cadena.
Finalmente, en el capítulo VI definimos la categoría de conglomerado asociada a una superficie marcada, así como la relación que existe entre el cruce de arcos y los triángulos en la categoría.
The objective of the present work is to be able to construct non-separable short exact sequences within the Jacobian algebra associated to a surface. In chapter I we introduce the concept of quivers with potentials. These will allow us to define the concept of Jacobian algebra. In Chapter II we review the concept of marked surfaces, as well as that of triangulations and the quivers associated with them. We define a potential for the quivers of this type and present some results concerning the Jacobian algebra associated to this type of quivers. In chapter III we introduce the combinatorial tool that will help us throughout the work: snake graphs. We present the general definition of this type of graphs and also how we can associate a snake graph to a triangulation. We define the superposition and crossing of these graphs and show the relationship that these operations have with our arcs on the surface. In chapter IV we define the concept of string and string modules. These will be elements of the Jacobian algebra that will allow us to find the exact sequences mentioned at the beginning. We also establish a bijection between arcs and strings. In Chapter V we establish the relationship between smoothing curves and string modules, as well as the characterization of short exact sequences using the cross of string modules. Finally, in Chapter VI we define the cluster category associated with a marked surface, as well as the relationship between the crossing of arcs and triangles in the category.
The objective of the present work is to be able to construct non-separable short exact sequences within the Jacobian algebra associated to a surface. In chapter I we introduce the concept of quivers with potentials. These will allow us to define the concept of Jacobian algebra. In Chapter II we review the concept of marked surfaces, as well as that of triangulations and the quivers associated with them. We define a potential for the quivers of this type and present some results concerning the Jacobian algebra associated to this type of quivers. In chapter III we introduce the combinatorial tool that will help us throughout the work: snake graphs. We present the general definition of this type of graphs and also how we can associate a snake graph to a triangulation. We define the superposition and crossing of these graphs and show the relationship that these operations have with our arcs on the surface. In chapter IV we define the concept of string and string modules. These will be elements of the Jacobian algebra that will allow us to find the exact sequences mentioned at the beginning. We also establish a bijection between arcs and strings. In Chapter V we establish the relationship between smoothing curves and string modules, as well as the characterization of short exact sequences using the cross of string modules. Finally, in Chapter VI we define the cluster category associated with a marked surface, as well as the relationship between the crossing of arcs and triangles in the category.
Link to repository: http://hdl.handle.net/20.500.14076/25804
Discipline: Matemática
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ciencias
Grade or title: Licenciado en Matemática
Juror: Escalante Del Águila, Segundo Félix; Palacios Baldeón, Joe Albino
Register date: 8-Aug-2023
This item is licensed under a Creative Commons License