Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Mejía, L., (2021). Modelamiento numérico y calibración de muro de suelo reforzado [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/22094
Mejía, L., Modelamiento numérico y calibración de muro de suelo reforzado [Tesis]. PE: Universidad Nacional de Ingeniería; 2021. http://hdl.handle.net/20.500.14076/22094
@misc{renati/711622,
title = "Modelamiento numérico y calibración de muro de suelo reforzado",
author = "Mejía Núñez, Luis Marcos",
publisher = "Universidad Nacional de Ingeniería",
year = "2021"
}
Title: Modelamiento numérico y calibración de muro de suelo reforzado
Authors(s): Mejía Núñez, Luis Marcos
Advisor(s): Aguilar Bardales, Zenón
Keywords: Muros de suelo reforzado; Modelamiento numérico; Análisis de estabilidad; Técnica de elementos finitos
OCDE field: http://purl.org/pe-repo/ocde/ford#2.01.01
Issue Date: 2021
Institution: Universidad Nacional de Ingeniería
Abstract: En la presenta tesis se desarrolla el modelamiento numérico de un muro de suelo reforzado con cintas poliméricas, con el objetivo de determinar los esfuerzos y deformaciones por medio del método de elementos finitos, así como también el análisis de estabilidad por el método de equilibrio límite y reducción paramétrica; dicho muro sirve para plataforma de acceso vehicular. Para modelar el suelo por medio de la técnica de elementos finitos se utilizan los modelos constitutivos de Mohr Coulomb y Hardening Soil, implementados en el software PLAXIS, asimismo se han determinado los esfuerzos y deformaciones en condición estática en el suelo, y elementos de refuerzo del muro. Los parámetros del modelo constitutivo provienen de ensayos y estimaciones geotécnicas.
El muro analizado está reforzado con cintas poliméricas y el paramento frontal es de paneles de concreto. El muro tiene un empotramiento de 3.0 m en el suelo de fundación, tiene una altura de 26.0 m, un ancho de 25.0 m y sobre su cabeza hay un talud de 37° de inclinación.
El análisis del muro de suelo con los modelos Mohr Coulomb (MC) y Hardening Soil (HS) presenta diferencias marcadas en los resultados de esfuerzos y deformaciones. La diferencia se debe a que el modelo MC es puramente elástico hasta un estado de fluencia para luego comportarse puramente plástico de acuerdo con una función de potencial, que no depende del nivel de esfuerzo. En cambio, el modelo elastoplástico HS presenta un endurecimiento por corte y compresión, a través de dos funciones de fluencia, que controlan sus deformaciones plásticas. Además, la matriz de rigidez de HS depende del estado de esfuerzos, la rigidez del suelo es una función potencial y depende del esfuerzo de confinamiento. El modelo HS soporta un análisis de descarga y recarga, en tanto que el modelo MC no modela trayectorias de esfuerzo de descarga y recarga. El modelo HS es más conveniente para modelar estructuras donde exista mayor influencia de la variación de la rigidez; la limitación es que necesita mayor cantidad de parámetros que el modelo MC, muy usado en la práctica.
El asentamiento medido en la base del muro, durante el proceso constructivo, fue de 12.0 cm. Por medio del asentamiento medido en la base del muro, se calibró el modelo numérico, variando el módulo de rigidez de la roca y suelo natural, hasta obtener un asentamiento similar al medido en campo. El módulo de elasticidad de la roca fracturada se estimó en el orden de 30-50 % del módulo máximo obtenido de ensayos geofísicos, y el de los suelos en el orden del 10 - 20% del módulo máximo. Los elementos de refuerzo tienen una deformación del orden de 1.0 – 2.4 %.
Por otro lado, la estabilidad del muro se ha analizado por medio del método de equilibrio límite y reducción paramétrica. La metodología de reducción paramétrica no toma en cuenta el efecto del refuerzo; por lo que solamente podrá simular una falla global de la estructura, sin pasar la superficie de falla por los refuerzos. La metodología de equilibrio límite puede modelar una falla local, pasando la superficie de falla por los refuerzos. La estabilidad en condiciones sísmicas se determina mediante método pseudoestático como un indicador grueso; los métodos de deformaciones se pueden adoptar, sin embargo, las deformaciones permanentes tolerables dependen de acuerdo con estándares, como la FHWA-NHI-10-024 – 25 y tipo de estructura. El desempeño sísmico de los muros se debe realizar mediante ensayos de mesas vibradoras o estimaciones con modelos dinámicos.
Para el modelamiento similares se recomienda usar el modelo Hardening Soil, HS. Los parámetros de rigidez del suelo de deben obtener de diversas fuentes, como ensayos geofísicos, ensayo edométrico, prueba de placa. Los parámetros de resistencia de suelos gravosos deben ser obtenidas de ensayos a gran escala. Así también en el proceso de cálculo se recomienda el método “Updated Mesh“ o malla deformada, dado que la matriz de rigidez se ensambla con la geometría deformada.
This thesis deals with the numerical modeling of a mechanically stabilized earth wall (MSE) with strips reinforcement, in order to determine stress and strain though the Finite Elements Method as well as to carry out the stability analysis through the limit equilibrium and parametric reduction methods, where the wall serve as a platform for vehicular access road. The Mohr Coulomb and Hardening Soil constitutive models are used to model the soil with the Finite Elements Method, which are implemented in the software PLAXIS. Furthermore, soil strain and stress in static condition were determined as well as the reinforcing elements of the wall. The parameters of the constitutive models were obtained from laboratory tests and geotechnical estimates. The analyzed MSE wall is reinforced with uniaxial geogrids and its front face is made of concrete. The wall is 3 m deep in its foundation, 26.0 m high, and 25.0 m wide with 37° slope on top. The analysis carried out to the earth wall with Mohr Coulomb (MC) and Hardening Soil (HS) models shows strong differences in stress-strain results. The difference is due to the fact that the MC model displays an elastic behavior up to a yielding state, and then it has a purely plastic behavior according to a power function independent of the stress level. Meanwhile, the HS elastoplastic model shows two yield functions: shear and compression hardening, which control plastic strain. In addition, the stiffness matrix of the HS model depends on the stress level, thus soil stiffness is a power function, and it depends on the confinement level. The HS model analyzes path of unloading and reloading, whereas the MC model does not model unloading and reloading stress paths. The HS model is more convenient to model structures with more stiffness variation; however, it requires more parameters than MC model, which is more used in the practice. The settlement measured on the base of the wall during constructions was of 12.0 centimeters. Through the measured settlement, a numerical model was calibrated varying the rock and natural soil stiffness modulus, up to find a settlement similar to that measured on the field. The elasticity modulus of the fractured rock is between of 30 – 50 % of the maximum modulus measured by geophysical tests, and soil elastic modulus is 10 - 20% of the maximum modulus, approximately. The strain reinforcing elements are between 1.0 – 2.4 %. On the other hand, wall stability was analyzed through limit equilibrium and parametric reduction methods. The parametric reduction method does not take into account the effect of the reinforcement; therefore, it can only simulate a global structural failure without passing the failure through the reinforcement. The limit equilibrium methodology can model a local failure, passing the failure surface though the reinforcement. The stability in seismic condition was determined by pseudostatic method, which is a crude indicator. Deformation procedures can be used; however, tolerable permanent deformation is depending of standards as the FHWA-NHI-10-024 – 25 and reinforced earth wall type. The seismic performance of the wall should be determined by tests, for example shaking table test, and numerical dynamic models. For similar models, it is recommended to use Hardening Soil model, HS. The soil stiffness parameters should come from different sources, there are geophysical tests, edometric tests, plate load test and so on. The strength parameters of gravels should come from large scale tests. In additions, Updated Mesh method is better to use in numerical calculations with large deformation, because stiffness matrix is assembled from deformed geometry.
This thesis deals with the numerical modeling of a mechanically stabilized earth wall (MSE) with strips reinforcement, in order to determine stress and strain though the Finite Elements Method as well as to carry out the stability analysis through the limit equilibrium and parametric reduction methods, where the wall serve as a platform for vehicular access road. The Mohr Coulomb and Hardening Soil constitutive models are used to model the soil with the Finite Elements Method, which are implemented in the software PLAXIS. Furthermore, soil strain and stress in static condition were determined as well as the reinforcing elements of the wall. The parameters of the constitutive models were obtained from laboratory tests and geotechnical estimates. The analyzed MSE wall is reinforced with uniaxial geogrids and its front face is made of concrete. The wall is 3 m deep in its foundation, 26.0 m high, and 25.0 m wide with 37° slope on top. The analysis carried out to the earth wall with Mohr Coulomb (MC) and Hardening Soil (HS) models shows strong differences in stress-strain results. The difference is due to the fact that the MC model displays an elastic behavior up to a yielding state, and then it has a purely plastic behavior according to a power function independent of the stress level. Meanwhile, the HS elastoplastic model shows two yield functions: shear and compression hardening, which control plastic strain. In addition, the stiffness matrix of the HS model depends on the stress level, thus soil stiffness is a power function, and it depends on the confinement level. The HS model analyzes path of unloading and reloading, whereas the MC model does not model unloading and reloading stress paths. The HS model is more convenient to model structures with more stiffness variation; however, it requires more parameters than MC model, which is more used in the practice. The settlement measured on the base of the wall during constructions was of 12.0 centimeters. Through the measured settlement, a numerical model was calibrated varying the rock and natural soil stiffness modulus, up to find a settlement similar to that measured on the field. The elasticity modulus of the fractured rock is between of 30 – 50 % of the maximum modulus measured by geophysical tests, and soil elastic modulus is 10 - 20% of the maximum modulus, approximately. The strain reinforcing elements are between 1.0 – 2.4 %. On the other hand, wall stability was analyzed through limit equilibrium and parametric reduction methods. The parametric reduction method does not take into account the effect of the reinforcement; therefore, it can only simulate a global structural failure without passing the failure through the reinforcement. The limit equilibrium methodology can model a local failure, passing the failure surface though the reinforcement. The stability in seismic condition was determined by pseudostatic method, which is a crude indicator. Deformation procedures can be used; however, tolerable permanent deformation is depending of standards as the FHWA-NHI-10-024 – 25 and reinforced earth wall type. The seismic performance of the wall should be determined by tests, for example shaking table test, and numerical dynamic models. For similar models, it is recommended to use Hardening Soil model, HS. The soil stiffness parameters should come from different sources, there are geophysical tests, edometric tests, plate load test and so on. The strength parameters of gravels should come from large scale tests. In additions, Updated Mesh method is better to use in numerical calculations with large deformation, because stiffness matrix is assembled from deformed geometry.
Link to repository: http://hdl.handle.net/20.500.14076/22094
Discipline: Ingeniería Civil
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil
Grade or title: Ingeniero Civil
Juror: Gutiérrez Lázares, José Wilfredo; Huamán Egoavil, Carlos Ernesto
Register date: 17-May-2022
This item is licensed under a Creative Commons License