Bibliographic citations
Gonzales, R., (2020). Análisis de parámetros que determinan el desempeño energético y la selección de componentes de un sistema de refrigeración termoeléctrico [Trabajo de suficiencia profesional, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/21752
Gonzales, R., Análisis de parámetros que determinan el desempeño energético y la selección de componentes de un sistema de refrigeración termoeléctrico [Trabajo de suficiencia profesional]. PE: Universidad Nacional de Ingeniería; 2020. http://hdl.handle.net/20.500.14076/21752
@misc{renati/711428,
title = "Análisis de parámetros que determinan el desempeño energético y la selección de componentes de un sistema de refrigeración termoeléctrico",
author = "Gonzales Toledo, Richard Daniel",
publisher = "Universidad Nacional de Ingeniería",
year = "2020"
}
Peltier effect corresponds to the heat extraction or absorption occurring at the contact between two different materials, it is a phenomenon that be used either for heating or for cooling, although the main application is cooling. Thermometric applications are limited due to its efficiency energy, that is not comparable with common technologies. Despite this, it is a viable alternative; without using chlorofluorocarbons or other chemicals that may be harmful to the environment The objective of this research is to analyze the parameters that determine the energy performance of a thermoelectric cooling, including the selection of components, based on numerical results. To carry out the analysis, a 50 L cooler of capacity and a 50 W of refrigeration thermal load, comparable to portable household equipment have been established as a study unit. To determine the mathematical models, applicable to the analysis unit, the physical processes have been determined; they include: heat flow and electrical work in a Peltier module; heat transfer through the walls of the refrigerator and the extended surfaces; also, include the analysis of thermal loads to be compensated in order to maintain the temperature inside the refrigerated area. Design restrictions have been imposed in order to solve the proposed equations. It Includes geometric restrictions; temperature restrictions (indoor and outdoor) and air flow regime (laminar). In addition, the values of thermal conductivity, electrical resistivity, Seebeck coefficient have been considered constant. The components analyzed in this research are the Peltier module; extended surfaces, fans and thermal cooling box. Three Peltier modules capable of providing the design thermal load were analyzed. The Peltier module TEC1-12724 was selected from the manufacturer Thermonamic. Seebeck coefficient, thermal conductance and electrical resistance effectives values were determined. Using these parameters, the performance of Peltier module was determined. The temperature of the refrigerated area was set at 6°𝐶 (279 𝐾) and the temperature the module’s cold site was set at 2°𝐶 (275 𝐾). Under these conditions, the Peltier module has a maximum performance coefficient of 0,403 and is capable of extracting a cooling power of 51,4 𝑊. To extract the cooling power the extended surfaces were dimensioned. The thermal resistances (total thermal resistance), for hot and cold focus respectively are: 0,0795𝐾𝑊⁄ and 0,1288 𝐾𝑊⁄. Insulating material of the thermal box was analyzed to determine the thickness to minimize the heat gain by transmission from the environment. When using expanded polyurethane, a heat gain of 5,16 𝑊 and a thickness of 6 𝑐𝑚 is obtained. Finally, the equations that describe each physical phenomenon have been solved using the software: “Engineering Equation Solver (EES)“, which has a library of thermophysical properties of various materials and substances.
This item is licensed under a Creative Commons License