Look-up in Google Scholar
Full metadata record
Metzger Alván, Roger Javier
Villavicencio Fernández, Helmuth
Villavicencio Fernández, Helmuth
2020-07-21T14:47:28Z
2020-07-21T14:47:28Z
2018
http://hdl.handle.net/20.500.14076/19046
Inicialmente, consideramos la noción de medida F-expansiva para flujos (donde F es un subconjunto del conjunto de reparametrizaciones H) generalizando la definida por Carrasco y Morales en [17]. A su vez, analizamos el comportamiento topológico del conjunto de medidas F-expansivas obteniendo condiciones suficientes para que este sea un conjunto Gδσ. Seguidamente, introducimos el concepto de punto F-sombreable para flujos y probamos que esta noción satisface propiedades que extienden las dadas en [30]. Además, mejoramos la clasificación topológica del conjunto de puntos sombreables, dada por Kawaguchi en [20], al probar que este es un sub-conjunto Gδ. También, probamos que el atractor geométrico de Lorenz, cuyo mapeo de retorno f satisfaga f(0) ≠ 0 ó f(1) ≠ 1, no admite puntos F-sombreables. Finalmente, definimos la noción de complejidad para flujos que actuará como un indicador de complejidad más fino que la entropía topológica, siempre que existan medidas positivamente F-expansivas (extendiendo los resultados de [29]). Este indicador depende tan solo del tiempo-uno del flujo, es invariante por conjugaciones y suspensiones. Adicionalmente, obtenemos un estimado de las ´orbitas periódicas de un sistema expansivo cuyos puntos F-sombreables contienen al conjunto no errante y admite complejidad. (es)
Initially, we consider the notion of F-expansive measure for flows (where F is a subset of the set of reparametrizations H) generalizing the one defined by Carrasco and Morales in [17]. In addition, we analyze the topological behavior of the set of F-expansive measures obtaining sufficient conditions for these to be a Gδσ set. Next, we introduce the concept of F-shadowable point for flows and we prove that this notion satisfies properties that extend those given in [30]. Moreover, we improved the topological classification of the set of shadowable points, given by Kawaguchi in [20], by proving that this one is a Gδ set. Also, we proved that the geometric Lorenz attractor, whose return mapping f satisfies f(0) ≠ 0 o f(1) ≠ 1, does not have F-shadowable points. Finally, we define the notion of dynamical complexity for flows that will act as an indicator of complexity rather than the topological entropy whenever there are positive measures F-expansive (extending the result of [29]). This indicator depends only on the time-one of the flow, it is invariant by conjugations and suspensions. In addition, we obtain an estimate of the periodic orbits of an expansive system whose F-shadowable points contain the non-wandering set and admit complexity. (en)
Tesis (es)
application/pdf (es)
spa (es)
Universidad Nacional de Ingeniería (es)
info:eu-repo/semantics/openAccess (es)
http://creativecommons.org/licenses/by-nc-nd/4.0/ (es)
Universidad Nacional de Ingeniería (es)
Repositorio Institucional - UNI (es)
Sistemas dinámicos (es)
Matemática aplicada (es)
Sistemas continuos (es)
Un indicador de complejidad en sistemas dinámicos (es)
info:eu-repo/semantics/doctoralThesis (es)
Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado (es)
Doctorado en Ciencias con Mención en Matemática (es)
Doctorado (es)
Doctor en Ciencias con Mención en Matemática (es)
PE (es)
http://purl.org/pe-repo/ocde/ford#1.01.01 (es)
Doctorado (es)
http://purl.org/pe-repo/renati/nivel#doctor (es)
06445690
https://orcid.org/0000-0002-8437-0118 (es)
43978142
541018
Pereyra Ravinez, Orlando Luis
Comina Bellido, Germán Yuri
Velásquez Castañón, Oswaldo José
Rosas Bazán, Rudy José
http://purl.org/pe-repo/renati/type#tesis (es)
Pública



This item is licensed under a Creative Commons License Creative Commons