Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Joaquín, M., (2018). Respuesta sísmica no lineal de reservorios elevados de concreto armado con fuste cilíndrico [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/17851
Joaquín, M., Respuesta sísmica no lineal de reservorios elevados de concreto armado con fuste cilíndrico [Tesis]. : Universidad Nacional de Ingeniería; 2018. http://hdl.handle.net/20.500.14076/17851
@mastersthesis{renati/710152,
title = "Respuesta sísmica no lineal de reservorios elevados de concreto armado con fuste cilíndrico",
author = "Joaquín Vásquez, Misael Cipriano",
publisher = "Universidad Nacional de Ingeniería",
year = "2018"
}
Title: Respuesta sísmica no lineal de reservorios elevados de concreto armado con fuste cilíndrico
Authors(s): Joaquín Vásquez, Misael Cipriano
Advisor(s): Salinas Basualdo, Rafael Rolando
Issue Date: 2018
Institution: Universidad Nacional de Ingeniería
Abstract: Los reservorios elevados son estructuras que se emplean para almacenar y distribuir el agua potable a una población, y pertenecen a un sistema vital de línea de vida que luego de la ocurrencia de un terremoto no debe interrumpirse, y mucho más en casos de emergencia. El último sismo importante ocurrido en el país el 15 de agosto del 2007 en Ica, ha revelado la vulnerabilidad de este tipo de estructura, en la cual muchos reservorios elevados con apoyo tipo fuste cilíndrico han sido afectados.
El Perú para el diseño sismorresistente cuenta con la norma técnica de edificaciones NTE E-030 la cual establece los parámetros para el diseño de estructuras en el país, y no indica ningún valor para el factor de reducción de respuesta sísmica (R) para estructuras de reservorios elevados, debido a la escaza investigación realizada en el país sobre este tipo de estructuras, lo que ha obligado a los diseñadores a considerar normas estadounidenses (ACI, ASCE, FEMA, ATC, etc.); empleando el principio de Intze para su predimensionamiento.
En la presente investigación, se ha analizado reservorios elevados para una demanda sísmica para almacenamiento de agua con parámetros de altura de fuste más comunes y capacidad de almacenamiento para poblaciones de 1250 hasta 15000 habitantes aprox., ubicadas en la zona de costa y sierra del país y condición de suelo firme.
Empleando el programa SAP 2000, se realizó análisis pushover determinando la capacidad máxima estático, y el análisis tiempo historia no lineal con cinco registros sísmicos de terremotos más severos ocurridos en el país, los que han sido escalados hasta intensidades similares al espectro de respuesta de diseño de la norma para R=1, determinando la capacidad máxima dinámica para este nivel de demanda sísmica. Se aplicó la metodología del ATC-19 (1995) para la determinación del factor R, llegando a evaluarse parámetros como: ductilidad de desplazamiento, distorsión máxima, sobrerresistencia, comportamiento histérico entre otros de las estructuras de reservorios elevados.
Se llegó a determinar que el valor del factor R para reservorios elevados varía entre 1.82 a 2.48 y que los reservorios elevados en el país presentan un comportamiento satisfactorio no presentando daño significativo ante la ocurrencia de un sismo severo.
Elevated reservoirs are structures that are used to store and distribute drinking water to a population, and are part of a vital lifeline system that after the occurrence of an earthquake should not be interrupted, and much more in those cases of emergency.The last major earthquake that occurred in the country on August 15, 2007 in Ica, has revealed the vulnerability of this type of structure, in which many high water storage towers with cylindrical shaft type support have been affected. The peruvian earthquake design code NTE E-030 establishes parameters for the design of buildings in the country, not indicating any value for the reduction factor of the seismic response (R) for structures of elevated reservoirs, due to the very limited research carried out in the country, which has forced the designers of this type of structures to consider US standards (ACI, ASCE, FEMA, ATC); using the Intze principle for its pre-dimensioning. This research work, high reservoirs have been analyzed for a seismic demand with parameters of height of more common support structure and storage capacity for populations of 1250 to 15000 inhabitants approximately, located in the zone of coast and mountain range of the country and with firm soil condition. Pushover analyses have been used to determine the maximum static capacity, and the nonlinear time history analysis with 05 seismic records of some of the more severe earthquakes occurred in the country, which have been scaled up to match the design response spectrum of the standard for R = 1, determining the maximum dynamic capacity for this level of seismic demand. The ATC-19 (1995) methodology was applied for the determination of the R factor, reaching parameters such as: displacement ductility, maximum distortion, overresistance, hysteretic behavior among others of the high reservoir structures. It was determined that the value of the R factor for high reservoirs varies between 1.82 to 2.48 and that the high reservoirs in the country present a satisfactory behavior not presenting significant damage before the occurrence of a severe earthquake.
Elevated reservoirs are structures that are used to store and distribute drinking water to a population, and are part of a vital lifeline system that after the occurrence of an earthquake should not be interrupted, and much more in those cases of emergency.The last major earthquake that occurred in the country on August 15, 2007 in Ica, has revealed the vulnerability of this type of structure, in which many high water storage towers with cylindrical shaft type support have been affected. The peruvian earthquake design code NTE E-030 establishes parameters for the design of buildings in the country, not indicating any value for the reduction factor of the seismic response (R) for structures of elevated reservoirs, due to the very limited research carried out in the country, which has forced the designers of this type of structures to consider US standards (ACI, ASCE, FEMA, ATC); using the Intze principle for its pre-dimensioning. This research work, high reservoirs have been analyzed for a seismic demand with parameters of height of more common support structure and storage capacity for populations of 1250 to 15000 inhabitants approximately, located in the zone of coast and mountain range of the country and with firm soil condition. Pushover analyses have been used to determine the maximum static capacity, and the nonlinear time history analysis with 05 seismic records of some of the more severe earthquakes occurred in the country, which have been scaled up to match the design response spectrum of the standard for R = 1, determining the maximum dynamic capacity for this level of seismic demand. The ATC-19 (1995) methodology was applied for the determination of the R factor, reaching parameters such as: displacement ductility, maximum distortion, overresistance, hysteretic behavior among others of the high reservoir structures. It was determined that the value of the R factor for high reservoirs varies between 1.82 to 2.48 and that the high reservoirs in the country present a satisfactory behavior not presenting significant damage before the occurrence of a severe earthquake.
Link to repository: http://hdl.handle.net/20.500.14076/17851
Discipline: Maestría en Ciencias con Mención en Ingeniería Estructural
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil. Unidad de Posgrado
Grade or title: Maestro en Ciencias con Mención en Ingeniería Estructural
Register date: 11-Jun-2019
This item is licensed under a Creative Commons License