Bibliographic citations
Salgado, J., (2017). Redes neuronales artificiales y simulación de Montecarlo como modelo predictivo que determine las propiedades físicas del concreto de alta resistencia [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/6162
Salgado, J., Redes neuronales artificiales y simulación de Montecarlo como modelo predictivo que determine las propiedades físicas del concreto de alta resistencia [Tesis]. : Universidad Nacional de Ingeniería; 2017. http://hdl.handle.net/20.500.14076/6162
@mastersthesis{renati/707986,
title = "Redes neuronales artificiales y simulación de Montecarlo como modelo predictivo que determine las propiedades físicas del concreto de alta resistencia",
author = "Salgado Salas, Juan Manuel",
publisher = "Universidad Nacional de Ingeniería",
year = "2017"
}
A Supervised Artificial Neural Network model is proposed for the prediction of the result of the compression test of a construction concrete after the curing period from easily measurable manufacturing data. The compressive strength of the concrete is one of the most important parameters in its quality control. However, these tests are performed after a curing period which makes the results far from being immediate to the manufacture of the product. Therefore, a reliable mathematical model is proposed to obtain the results of the test immediately. The proposed model has a correlation coefficient greater than 0.85 and allows a considerable reduction in the time to obtain the results of the compressive strength. In the present work, a methodology will be developed to obtain both the uncertainty and the confidence intervals of the output of a specific model of neural network based on the Monte Carlo Simulation Method specified in Supplement 1 of the GUM and later apply it to the Modeling of the compressive strength test of the concrete.
This item is licensed under a Creative Commons License