Bibliographic citations
Valero, Y., (2017). Desarrollo de un modelo de microsimulación del tránsito vehicular basado en redes neuronales artificiales en una vía expresa [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/5828
Valero, Y., Desarrollo de un modelo de microsimulación del tránsito vehicular basado en redes neuronales artificiales en una vía expresa [Tesis]. : Universidad Nacional de Ingeniería; 2017. http://hdl.handle.net/20.500.14076/5828
@misc{renati/707953,
title = "Desarrollo de un modelo de microsimulación del tránsito vehicular basado en redes neuronales artificiales en una vía expresa",
author = "Valero Camarena, Yeltsin Luis",
publisher = "Universidad Nacional de Ingeniería",
year = "2017"
}
The present work develops a methodology of calibration of a model of microsimulation of traffic using Artificial Neural Networks of backpropagation and maps of self-organization, for the analysis has been taken in field measurements and has been made in the road of the Expressway Av. Javier Prado and Av. Paseo de la República, these filming have allowed us to determine parameters such as traffic flow, travel times, vehicle typology, average speed of travel, among other parameters. Once the data has been obtained, the Vissim 8.0 software is entered, in which 200 different simulation scenarios have been established, having as input parameters the behavior of the driver and as an output parameter the travel time, travel speeds, and lengths of tail. Finally, with the obtained data, they have been grouped through the use of neural networks of self-organization maps to subsequently carry out the training, validation and verification with an architecture of a neural network of feedback, finding a correlation of R = 0.97, with said architecture of the neural network, the optimal calibration parameters were determined for the input data to Vissim software, with an error lower than 5%.
This item is licensed under a Creative Commons License