Bibliographic citations
Changanaqui, K., (2017). Síntesis del nanocompuesto de magnetita/plata con propiedades antibacterianas frente a las bacterias enterobacter aerogenes y enterococcus faecalis [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/5730
Changanaqui, K., Síntesis del nanocompuesto de magnetita/plata con propiedades antibacterianas frente a las bacterias enterobacter aerogenes y enterococcus faecalis [Tesis]. : Universidad Nacional de Ingeniería; 2017. http://hdl.handle.net/20.500.14076/5730
@mastersthesis{renati/707892,
title = "Síntesis del nanocompuesto de magnetita/plata con propiedades antibacterianas frente a las bacterias enterobacter aerogenes y enterococcus faecalis",
author = "Changanaqui Barrientos, Katherina",
publisher = "Universidad Nacional de Ingeniería",
year = "2017"
}
The present work consists in the synthesis and characterization of the magnetic nanocomposite of magnetite/silver (Fe3Ü4/Ag) and the evaluation of its antibacterial properties against Gram-negative bacteria Enterobacter aerogenes and Gram-positive, Enterococcus faecalis. The magnetite MNPs were prepared by sol-gel method using the salt FeCh as a precursor, sodium citrate Na3C6H5Ü7 as a stabilizer, sodium nitrate NaNÜ3 as an oxidizing agent and cetyltrimethylammonium bromide (CTAB) as a surfactant. Subsequently on the colloidal dispersion of magnetite, in-situ chemical reduction of silver ions with glucose and polyvinylpyrrolidone (PVP) as a dispersive agent was carried out to obtain the nanocomposite where the silver NPs are on the Fe3Ü4 MNPs. Morphological and spectroscopic studies of nanoparticles of magnetite and nanocomposite were carried out using the following techniques of characterization of: Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Mossbauer spectroscopy (MS), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The size of the magnetite MNPs were in general spherical, with a diameter of 7.75 nm and 10.13 nm for the nanocomposite, according to scanning electron microscopy (SEM) measurement. The antibacterial effect was studied using a modified standard ASTM method to determine the antibacterial activity of immobilized antimicrobial agents under dynamic contact conditions and then the colonies were counted by serial dilutions against the Gram negative Enterobacter aerogenes and Gram positive, Enterococcus faecalis bacterial strains. The results indicated total inhibition of bacterial growth with the use of the nanocomposite. The bacteria Enterobacter aerogenes (total coliforms) is an indicator according to the National Technical Norm (NTN ITINTEC 214.003) and the bacterium Enterococcus faecalis is an indicator of human faecal contamination in waters and generates a higher incidence of gastrointestinal diseases. The bacterium Enterococcus faecalis is also one of the most efficient bacteriological indicators to evaluate the quality of sea water, because it is very resistant to saline conditions of this medium and is directly related to gastroenteritis, respiratory diseases, conjunctivitis and dermatitis, among other. This bacteria as part of faecal Strepococci is better indicator of fecal contamination than the coliforms. For these reasons, the antimicrobial activity of the nanocomposite against these bacterias will study in the future it could be apply in contaminated water treatments. Finally, the results indicate that the magnetic nanocomposite of magnetite/silver (Fe3O4/Ag) synthesized can be potentially used in microbiological water disinfection.
This item is licensed under a Creative Commons License