Look-up in Google Scholar
Full metadata record
Alcántara Bode, Julio César
Mendoza Uribe, Aldo Alcides
Sumire Qquenta, David Andrés
Sumire Qquenta, David Andrés
2017-11-02T17:41:11Z
2017-11-02T17:41:11Z
2016
http://hdl.handle.net/20.500.14076/5655
En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony. (es)
In this work of investigation, we will study the equations nonlinear system of dispersive under the dissipation effect (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ where donde µ > 0, |a| < 1 and p ≥ 1, it is an integer number. Our objective is to demonstrate that the dispersive system or the problem of Cauchy, is locally and globally good formulated. For this reason, we will see several properties of the real solutions u (x, t), v (x, t) for all x E R, t ≥ 0. The problem of Cauchy (1) is a system coupling of two equations generalize of tipe Benjamin - Bona Mahony. (en)
Tesis (es)
application/pdf (es)
spa (es)
Universidad Nacional de Ingeniería (es)
info:eu-repo/semantics/openAccess (es)
http://creativecommons.org/licenses/by-nc-nd/4.0/ (es)
Universidad Nacional de Ingeniería (es)
Repositorio Institucional - UNI (es)
Sistema dispersivo no lineal del tipo Benjamin Bona Mahony (es)
Transformada de Fourier (es)
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony (es)
info:eu-repo/semantics/masterThesis (es)
Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado (es)
Maestría en Ciencias con Mención en Matemática Aplicada (es)
Maestría (es)
Maestro en Ciencias con Mención en Matemática Aplicada (es)
Maestría (es)
Pública



This item is licensed under a Creative Commons License Creative Commons