Look-up in Google Scholar
Full metadata record
Sierra Flores, Luis Miguel
Acosta De la Cruz, Pedro Raúl
Pizarro Solís, Pedro Arturo
Acosta De la Cruz, Pedro Raúl
Acosta De la Cruz, Pedro Raúl
2017-07-06T20:24:39Z
2017-07-06T20:24:39Z
2011
http://hdl.handle.net/20.500.14076/3665
En la mayoría de las universidades se sigue un sistema de currículo flexible, esto significa que, a partir del segundo ciclo de estudios, los estudiantes universitarios pueden escoger los cursos a llevar, siempre y cuando se cumpla con el currículo y los reglamentos académicos correspondientes. Una gran dificultad en el proceso de inscripción es que el estudiante no tiene un sistema de ayuda o recomendación para tomar una buena decisión en la elección de los cursos a llevar, de tal manera que tenga la mayor probabilidad de salir airoso en su rendimiento académico. En este trabajo se aplica modelos predictivos (redes neuronales, regresión logística y regresión múltiple), que permitan al estudiante universitario predecir su rendimiento académico de cada curso en que desea inscribirse. El objetivo del estudio es predecir (a) si el alumno aprobará o no un curso o (b) la nota del curso. Para ello primero se realiza una selección de las variables predictores, en base a la experiencia de los autores en la cátedra universitaria y luego confrontando estas variables con las usadas en trabajos publicados relacionados al tema. Después usando la base de datos académica de los alumnos de una especialidad (previamente preparados) y el currículo correspondiente, se obtendrán los datos para las variables seleccionadas, mediante un programa en Java. Se aplica las técnicas de predicción a 7 cursos de la especialidad de Ingeniería Química de la Universidad Nacional de Ingeniería, usando los datos de los períodos académicos del 1993-1 al 2010-2. La aplicación de las técnicas de redes neuronales de retropropagación y de regresión logística para la predicción de la aprobación o no de un curso, arrojan promedios de porcentajes de aciertos similares, de 70.45 % y 70.39 % para los modelos, y de 72.83 % y 74.04 % para los pronósticos, respectivamente. La aplicación de las técnicas de redes neuronales de retropropagación y de regresión múltiple para la predicción de la “nota“ de un curso, arrojan promedios de raíz de errores medios cuadráticos similares, de 0.1495 y 0.1430 para los modelos, y de 0.1397 y 0.1380 para los pronósticos, respectivamente. No se requiere de una herramienta sofisticada para la aplicación del modelo de redes neuronales de retro propagación. En este trabajo se ha utilizado el Excel de Microsoft con su complemento Solver para la implementación de la red neuronal con diferentes números de capas y neuronas por capas. (es)
Tesis (es)
application/pdf (es)
spa (es)
Universidad Nacional de Ingeniería (es)
info:eu-repo/semantics/restrictedAccess (es)
http://creativecommons.org/licenses/by-nc-nd/4.0/ (es)
Universidad Nacional de Ingeniería (es)
Repositorio Institucional - UNI (es)
Rendimiento académico (es)
Redes neuronales artificiales (es)
Minería de datos (es)
Estudiantes universitarios (es)
Análisis de regresión logística (es)
Predicción del rendimiento académico en la Educación Superior usando minería de datos y su comparación con técnicas estadísticas (es)
info:eu-repo/semantics/masterThesis (es)
Universidad Nacional de Ingeniería. Facultad de Ingeniería Industrial y de Sistemas. Unidad de Posgrado (es)
Maestría en Ciencias con Mención en Ingeniería de Sistemas (es)
Maestría (es)
Maestro en Ciencias con Mención en Ingeniería de Sistemas (es)
Maestría (es)
Pública



This item is licensed under a Creative Commons License Creative Commons