Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Pérez, E., (2011). El teorema Tauberiano de Landau y aplicación [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/1788
Pérez, E., El teorema Tauberiano de Landau y aplicación [Tesis]. : Universidad Nacional de Ingeniería; 2011. http://hdl.handle.net/20.500.14076/1788
@misc{renati/705071,
title = "El teorema Tauberiano de Landau y aplicación",
author = "Pérez Sotelo, Edisson Alonso",
publisher = "Universidad Nacional de Ingeniería",
year = "2011"
}
Título: El teorema Tauberiano de Landau y aplicación
Autor(es): Pérez Sotelo, Edisson Alonso
Asesor(es): Velásquez Castañón, Oswaldo José
Palabras clave: Teorema Tauberiano de Landau; Teoría de la medida; Series de Dirichlet
Fecha de publicación: 2011
Institución: Universidad Nacional de Ingeniería
Resumen: La noción de teorema lauberiano no es del lodo precisa, es descrita de forma filosófica más que por definición.
La clasificación en teoremas abelianos (directos) y lauberianos (recíprocos) se da de la siguiente forma: leñemos un mapeo T : X —> Y (usualmente lineal con algunas propiedades de continuidad) entre espacios de funciones. Un teorema abeliano es un teorema que deduce una propiedad (usualmente asintótica) de T(f) a partir de una propiedad (usualmente asintótica) de /.
Un teorema lauberiano es un teorema recíproco, es decir a partir de una propiedad de / de¬ducimos una propiedad de T(f). Uno podría objetar lo siguiente: Si T es inyectivo, entonces no hay una diferencia real entre estas clasificaciones, pero en la práctica esta clasificación surge en situaciones en las cuales la inversa de T carece de las propiedades necesarias para la conclusión deseada. Estas hipótesis extras y delicados argumentos son necesarios frecuentemente para los teoremas lauberianos. Es preciso señalar que los teoremas abelianos son rara vez identificados como tales, a menos que exista un correspondiente teorema lauberiano, mientras que los teoremas lauberianos son identificados como tales sin que exista su correspondiente teorema abeliano.
Nuestra historia comienza con Abel y el prototipo de lodos los teoremas abelianos. Desde que las series e integrales divergentes aparecen frecuentemente en la práctica, es interesante intentar asignar algún significado a algunos de ellos. Existen muchas ideas interesantes, por ejemplo valores principales, parles finitas, o técnicas de sumación de Gauss, Weierslrass, Cesara, Abel, Poisson, etc. Una idea, debida a Abel, es la siguiente: supongamos (a„) una sucesión acolada. Entonces ∑ an puede diverger, pero la serie de potencias ∑ anZn tiene radio de convergencia al menos 1. El límite límr-1 ∑ an r10 puede o no existir y tener relación o no con ∑ an sin embargo cuando este límite existe es llamada la suma de Abel de ∑ an Como ejemplo, la suma de Abel de la serie divergente ∑ ( — 1)n es ½.
Enlace al repositorio: http://hdl.handle.net/20.500.14076/1788
Disciplina académico-profesional: Matemática
Institución que otorga el grado o título: Universidad Nacional de Ingeniería. Facultad de Ciencias
Grado o título: Licenciado en Matemática
Fecha de registro: 12-ago-2016
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons