Citas bibligráficas
Benites, N., (2000). Diseño e implementación de un sistema de control de posición digital predictivo para un motor DC sujeto a cargas no lineales [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/137
Benites, N., Diseño e implementación de un sistema de control de posición digital predictivo para un motor DC sujeto a cargas no lineales [Tesis]. : Universidad Nacional de Ingeniería; 2000. http://hdl.handle.net/20.500.14076/137
@mastersthesis{renati/703462,
title = "Diseño e implementación de un sistema de control de posición digital predictivo para un motor DC sujeto a cargas no lineales",
author = "Benites Saravia, Nicanor Raúl",
publisher = "Universidad Nacional de Ingeniería",
year = "2000"
}
This thesis deals with the problem of controlling a nonlinear position process using the Model Based Predictive Control (MBPC). The single-input-single-output (SISO) process is a DC servomotor (with permanent magnet, conmutation brushes and gear reduction mechanism) driving a nonlinear load. Such a load, a metal road attached to the motor shaft, is able to roate (like a robot manipulator) in a plane perpendicular to the shaft, The components of the implemented position control system are: The actuator, that includes a PWM (Pulse Width Modulation) signal generator and a H-type PWM-amplifier: DC servo motor; the sensor block, that includes an incremental optical encoder that senses angular position and its sign; a Lab-PC+ Input/Output interface; and, a compatible PC with Pentium microprocesador. All the simulation tasks were developed using MATLAB and the required control software were written in c-code by DOS platform. The non linear process is modelled using linearized and discretized equations in order to apply the predictive control technic for different set-points signals. The experimental resulte demonstrates that the predictive controller is able to stabilize the position of the nonlinear load despite the presence of variable non-linear loads restrictions in the input process. Appendix A deals with the position control problem developed above, but using the Diofantina equation.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons