Look-up in Google Scholar
Full metadata record
Álvarez Jáuregui, Guido
Aguilar Arizaca, Bommel Ronald
Rojas Rayme, Ever
2017-02-13T13:04:07Z
2017-02-13T13:04:07Z
2014
253T20140071
http://hdl.handle.net/20.500.12918/1461
En el proceso de describir los fenómenos que ocurren en la naturaleza, el uso de las ecuaciones diferenciales en derivadas parciales es de gran importancia y en consecuencia encontrar su respectiva solución que nos proporcione el comportamiento del fenómeno natural. Es así que en el presente trabajo de investigación se establece un procedimiento para poder encontrar la solución a las ecuaciones diferenciales en derivadas parciales de la cuerda vibrante de longitud finita y la conducción de calor a través de una varilla de longitud finita. Este procedimiento utiliza las funciones de Green como funciones auxiliares y las ecuaciones integrales. En el capítulo I, se expone el planteamiento metodológico utilizado en la investigación. En el capítulo II, se presenta las nociones fundamentales del algebra lineal, análisis real y análisis funcional para sustentar los espacios en los cuales se harán las operaciones y las propiedades que se utilizaran en el último capítulo del trabajo. En el capítulo III se introduce la teoría de las ecuaciones diferenciales ordinarias, ecuaciones diferenciales en derivadas parciales visto desde el punto de vista de operadores, ecuaciones integrales y las funciones de Green como una función auxiliar para convertir una ecuación diferencial ordinaria a una ecuación integral equivalente para abordar la solución de las ecuaciones diferenciales parciales del tipo hiperbólico y parabólico. En el capítulo IV, se presenta el desarrollo del trabajo de investigación mostrándose el nexo existente entre las ecuaciones integrales de Fredholm y las ecuaciones diferenciales en derivadas parciales y se hace una exposición detallada de cómo estas últimas ecuaciones son resueltas a través del uso de las ecuaciones diferenciales ordinarias, las funciones de Green y las ecuaciones integrales. De esta forma se logra el objetivo planteado de resolver las ecuaciones diferenciales en derivadas parciales mediante las ecuaciones integrales y se muestra que se obtiene el mismo resultado por el método propuesto en el trabajo de investigación. (es_PE)
Tesis
application/pdf (en_US)
spa (es_PE)
Universidad Nacional de San Antonio Abad del Cusco (es_PE)
info:eu-repo/semantics/closedAccess (en_US)
Universidad Nacional de San Antonio Abad del Cusco (es_PE)
Repositorio Institucional - UNSAAC (es_PE)
Ecuaciones diferenciales (es_PE)
Ecuaciones integrales de Fredholm (es_PE)
Funciones de Green (es_PE)
Ecuaciones diferenciales en derivadas parciales (es_PE)
Ecuaciones integrales (es_PE)
Solución de las ecuaciones diferenciales parciales utilizando las ecuaciones integrales (es_PE)
info:eu-repo/semantics/bachelorThesis
Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ciencias Químicas, Físicas y Matemáticas
Matemática
Título profesional
Licenciado en Matemática
PE
http://purl.org/pe-repo/ocde/ford#1.01.01
http://purl.org/pe-repo/renati/nivel#tituloProfesional
23868575
541026
http://purl.org/pe-repo/renati/type#tesis
Pública



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.