Buscar en Google Scholar
Registro completo de metadatos
Enciso Rodas, Lauro
Diaz Ccasa, Naysha Naydu
Huallpa Vargas, Yuri Vladimir
2019-07-12T20:58:25Z
2019-07-12T20:58:25Z
2019
253T20190356
IN/009/2019
http://hdl.handle.net/20.500.12918/4262
La lengua de señas se percibe a través de la vista y requiere el uso de la cabeza, cuello, torso y brazos para transmitir información bajo un espacio temporal. Como cualquier otra lengua el LSP está conformado por una sintaxis, gramática y léxico diferentes del idioma oficial. El 2003 se propuso la iniciativa de educación inclusiva para personas sordas, pero no tuvo un efecto, posteriormente el ministerio de educación MINEDU, cambio el panorama y la ley 29535 dio su reconocimiento a la lengua de señas para la investigación, difusión y enseñanza para personas sordas por intérpretes acreditados. Sin embargo actualmente el LSP se encuentra dentro de las lenguas minoritarias del Perú según la Dirección General de Educación Básica Especial las personas con discapacidad auditiva se ven en la necesidad de aprender esta lengua para interactuar en la sociedad a diferencia del resto de personas que no sufren de esta discapacidad y no tienen la necesidad de aprender esta lengua, por lo que se crea una barrera en la comunicación, pese a las legislaciones del estado es muy común ver la indiferencia a esta comunidad, ya sea voluntaria o involuntariamente. Mediante técnicas de Deep Learning1 se facilita la interpretación del LSP y con una mejora en la tasa de precisi´on2 frente a modelos similares, se construye un traductor unidireccional que permita captar las señas de una persona con un dispositivo e interpretarlas en nuestro idioma. Por otro lado, se genera un dataset de vıdeos de 10 señas almacenados en 100 frames aproximadamente cada uno. El modelo de solución alimenta a la arquitectura con datos generados por un sensor Kinect, el sensor es capaz de generar un video compuesto por tres tipos de datos: frames RGB, Depth3 y Skeleton4, los datos son agrupados según el modelo para extraer las características de cada frame y posteriormente alimentan la parte recurrente encargada de la traducción. Finalmente, nuestro modelo propuesto obtuvo una tasa de exactitud de 99.23 %, una tasa muy aceptable que contribuirá a futuros trabajos dentro de este campo. (es_PE)
Tesis
application/pdf (en_US)
spa (es_PE)
Universidad Nacional de San Antonio Abad del Cusco (es_PE)
info:eu-repo/semantics/openAccess (en_US)
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ (*)
Universidad Nacional de San Antonio Abad del Cusco (es_PE)
Repositorio Institucional - UNSAAC (es_PE)
Lengua de señas (es_PE)
Deep learning (es_PE)
Redes recurrentes (es_PE)
Sensor Kinect (es_PE)
Arquitectura de interpretación de expresiones comunes de la lengua de señas del Perú al idioma español (es_PE)
info:eu-repo/semantics/bachelorThesis
Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica
Ingeniería Informática y de Sistemas
Título profesional
Ingeniero Informático y de Sistemas
PE
http://purl.org/pe-repo/ocde/ford#2.02.03
http://purl.org/pe-repo/renati/nivel#tituloProfesional
23853228
https://orcid.org/0000-0001-6266-0838
72379197
76152092
612296
http://purl.org/pe-repo/renati/type#tesis
Pública



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons