Look-up in Google Scholar
Full metadata record
Reger, Johann
Grebner, Anna-Maria Stephanie (es_ES)
2018-10-18T03:08:13Z (es_ES)
2018-10-18T03:08:13Z (es_ES)
2018 (es_ES)
2018-10-17 (es_ES)
http://hdl.handle.net/20.500.12404/12893
Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem is based on neural fuzzy techniques. Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended by considering additional parameters in the training process. The learning method used in this training is dynamic backpropagation. For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It influences the results from the navigation controller to avoid collisions with objects blocking the path. The controller is trained with dynamic backpropagation and a reinforcement learning algorithm called deep deterministic policy gradient. (es_ES)
Tesis (es_ES)
eng (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ (*)
Robots móviles (es_ES)
Controladores programables (es_ES)
Redes neuronales (Computación) (es_ES)
Sistemas difusos (es_ES)
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks (es_ES)
info:eu-repo/semantics/masterThesis (es_ES)
Pontificia Universidad Católica del Perú. Escuela de Posgrado (es_ES)
Ingeniería de Control y Automatización (es_ES)
Maestría (es_ES)
Maestro en Ingeniería de Control y Automatización (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#2.02.03 (es_ES)
https://purl.org/pe-repo/renati/level#maestro (es_ES)
712037 (es_ES)
http://purl.org/pe-repo/renati/type#tesis (es_ES)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons