Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Villajuan, R., (2022). Isomorfismo de curvas elípticas mediante el invariante j [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/22089
Villajuan, R., Isomorfismo de curvas elípticas mediante el invariante j []. PE: Pontificia Universidad Católica del Perú; 2022. http://hdl.handle.net/20.500.12404/22089
@mastersthesis{renati/539257,
title = "Isomorfismo de curvas elípticas mediante el invariante j",
author = "Villajuan Guzman, Richard Andres",
publisher = "Pontificia Universidad Católica del Perú",
year = "2022"
}
Title: Isomorfismo de curvas elípticas mediante el invariante j
Authors(s): Villajuan Guzman, Richard Andres
Advisor(s): Poirier Schmitz, Alfredo Bernardo
Keywords: Isomorfismo (Matemáticas); Curvas elípticas; Invariantes
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 6-Apr-2022
Institution: Pontificia Universidad Católica del Perú
Abstract: Comenzamos con un breve recordatorio sobre algunas nociones de conjuntos
algebraicos, morfismos racionales y regulares. Por otro lado, veremos que la forma
de Weierstrass de una cúbica tiene asociado dos elementos importantes. El primero
es el discriminante τ que nos permite decidir si una cúbica es singular o no. El
segundo elemento, muy importante en este trabajo, es el invariante j, cuyo nombre
se debe a que éste no varía a pesar de los cambios de coordenadas que se realicen en
la curva. Este elemento cobra gran importancia pues nos ayuda a reconocer cuando
dos curvas elípticas son isomorfas. Y además, también nos permite contar el número
de automorfismos sobre una curva elíptica dada.
We start with a brief reminder on some notions of algebraic sets, rational and regular maps. On the other hand, we will see that the Weierstrass form of a cubic has two important elements associated to it. The first is the discriminant τ that allows us to decide whether a cubic is singular or not. The second element, very important in this work, is the j invariant, whose name is due to the fact that it does not vary despite the changes in coordinates that are made in the curve. This element is crutial because it helps us to recognize when two elliptic curves are isomorphic. And in addition, it also allows us to count the number of automorphisms on a given elliptic curve.
We start with a brief reminder on some notions of algebraic sets, rational and regular maps. On the other hand, we will see that the Weierstrass form of a cubic has two important elements associated to it. The first is the discriminant τ that allows us to decide whether a cubic is singular or not. The second element, very important in this work, is the j invariant, whose name is due to the fact that it does not vary despite the changes in coordinates that are made in the curve. This element is crutial because it helps us to recognize when two elliptic curves are isomorphic. And in addition, it also allows us to count the number of automorphisms on a given elliptic curve.
Link to repository: http://hdl.handle.net/20.500.12404/22089
Discipline: Matemáticas
Grade or title grantor: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grade or title: Maestro en Matemáticas
Juror: Cuadros Valle, Jaime; Poirier Schmitz, Alfredo Bernardo; Gonzales Vilcarromero, Richard Paul
Register date: 6-Apr-2022
This item is licensed under a Creative Commons License