Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Rosales, J., (2024). La geometría simpléctica en la mecánica clásica [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/27229
Rosales, J., La geometría simpléctica en la mecánica clásica []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/27229
@mastersthesis{renati/538107,
title = "La geometría simpléctica en la mecánica clásica",
author = "Rosales Ventocilla, Jimmy Leonardo",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
Full metadata record
Castillo Egoavil, Hernan Alfredo
Rosales Ventocilla, Jimmy Leonardo
2024-03-05T16:43:10Z
2024-03-05T16:43:10Z
2024
2024-03-05
http://hdl.handle.net/20.500.12404/27229
Este trabajo se adentra en la exploración de las aplicaciones de la geometría simpléctica en la física en el contexto de la mecánica clásica. La motivación subyacente a esta exploración radica en la comprensión de que la teoría convencional proporcionada por la literatura tradicional resulta insuficiente para analizar todas las complejidades que un sistema físico puede resentar. Por ejemplo, asegurar la existencia de trayectorias periódicas o identificar simetrías en el sistema no puede alcanzarse plenamente con los conocimientos clásicos de la mecánica. Por lo tanto, se hace imperativo incorporar los conceptos de geometría diferencial y sistemas dinámicos en el marco de la mecánica.
Para alcanzar este objetivo, comenzaremos por revisar los fundamentos de la mecánica, enfocándonos inicialmente en los formalismos Lagrangiano y Hamiltoniano.
A medida que desarrollemos estos conceptos esenciales, observaremos cómo emergen de manera natural los conceptos de variedades diferenciales, formas diferenciales, formas simplécticas y otros elementos relacionados con la geometría diferencial y simpléctica.
Adicionalmente, profundizaremos en la teoría de invariantes, donde presentaremos y demostraremos el teorema de Noether en el contexto de la geometría diferencial.
Este teorema proporcionará una comprensión más profunda para abordar
los sistemas físicos desde una perspectiva geométrica. Finalmente, exploraremos cómo estas influyentes teorías matemáticas, tanto la teoría de invariantes como
la geometría simpléctica, nos dotarán de herramientas más sólidas para enfrentar las complejidades de los sistemas físicos analizados en la literatura de la mecánica clásica, permitiéndonos resolverlos de manera más efectiva. (es_ES)
spa (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
http://creativecommons.org/licenses/by-nc/2.5/pe/ (*)
Mecánica (es_ES)
Geometría diferencial (es_ES)
Sistemas dinámicos diferenciales (es_ES)
La geometría simpléctica en la mecánica clásica (es_ES)
info:eu-repo/semantics/masterThesis (es_ES)
Pontificia Universidad Católica del Perú. Escuela de Posgrado. (es_ES)
Física (es_ES)
Maestría (es_ES)
Maestro en Física (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#1.03.00 (es_ES)
https://purl.org/pe-repo/renati/level#maestro (es_ES)
08668381
https://orcid.org/0000-0003-1208-7353 (es_ES)
72715912
533017 (es_ES)
De Zela Martinez, Francisco Antonio (es_ES)
Castillo Egoavil, Hernan Alfredo (es_ES)
Cuadros Valle, Jaime (es_ES)
https://purl.org/pe-repo/renati/type#tesis (es_ES)
Privada asociativa
This item is licensed under a Creative Commons License