Look-up in Google Scholar
Full metadata record
Cornejo Sánchez, Christian Santos
Agama Espinoza, Aymar Sandro
2021-10-25T22:40:32Z
2021-10-25T22:40:32Z
2020
2021-10-25
http://hdl.handle.net/20.500.12404/20714
Este trabajo de investigación reseña los hallazgos más recientes acerca del comercio electrónico y el aprendizaje automático aplicado a ese ámbito. En los últimos años, el comercio electrónico se ha expandido, en particular, en el contexto de la pandemia del COVID-19 ha tenido un importante rol para mitigar las restricciones de las ventas de los negocios que han tenido que enfrentar en varios periodos de tiempo la suspensión de sus operaciones presenciales. Al respecto, la United Nations Conference on Trade and Develpment (UNCTAD, 2020) informa que en el año 2020, si bien los resultados de las empresas líderes a nivel mundial de ventas online B2C ha sido diverso, el resultado global en ese grupo fue un incremento del 20.5%; asimismo, en un grupo de países seleccionados el aumento fue 22% a pesar de la caída de 1% en el total de ventas del año 2020. En dicho escenario, se observa el crecimiento de esta nueva industria que ofrece la digitalización de los mercados en toda forma de actividad económica, facilitando la compraventa de bienes, servicios e información a través de canales online. De acuerdo con la literatura, el comercio electrónico brinda diversas ventajas a las empresas tales como la reducción de costos operativos, el incremento del intercambio de información, reducción del tiempo de comercialización, aumento de la eficiencia en la cadena de suministro, mejora de la retención de cliente, creación de canales eficientes de bajo costo, entre otras. Las ventajas también se observan en el ámbito de los consumidores, como la facilidad de acceso a bienes y servicios, interacción social para validar sus preferencias y alta disponibilidad para escoger vendedores, productos e información. Asimismo, la investigación sobre el comercio electrónico revela que sus ventajas se pueden reforzar con las cualidades tecnológicas de la industria 4.0 y en particular, con las que ofrece la aplicación del aprendizaje automático. Uno de los hallazgos de la literatura es la necesidad de que los negocios se enfoquen en el cliente, y que construyan relaciones sostenibles y de largo plazo. De esta manera, se puede obtener información relevante sobre sus hábitos de consumo, preferencias y el comportamiento mediante algoritmos y programas de aprendizaje automático. Sobre el aprendizaje automático, diversos estudios han revelado un incremento de las aplicaciones predictivas y prescriptivas que buscan la optimización en la toma de decisiones. Asimismo, para implementarlas, la industria está invirtiendo vastamente en inteligencia artificial teniendo como impulsor a la gran cantidad de información que recopilan. Esto es visible en muchos campos de aplicación de la vida diaria desde el cuidado de la salud, turismo y fabricación hasta el comercio electrónico con el potencial de impactar favorablemente y de manera significativa en la economía. Finalmente, en relación con lo expuesto, la revisión de la literatura revela que las ventajas que ofrece el comercio electrónico pueden generar posibilidades de crear nuevas oportunidades comerciales y así contribuir a fortalecer la ventaja competitiva del negocio en un entorno cambiante (es_ES)
spa (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
http://creativecommons.org/licenses/by/2.5/pe/ (*)
Comercio electrónico (es_ES)
Aprendizaje automático (Inteligencia artificial) (es_ES)
Revisión de la literatura del comercio electrónico, el aprendizaje automático y sus aplicaciones en la industria y tiendas por departamento en línea (es_ES)
info:eu-repo/semantics/bachelorThesis (es_ES)
Pontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería (es_ES)
Ciencias con mención en Ingeniería Industrial (es_ES)
Bachillerato (es_ES)
Bachiller en Ciencias con mención en Ingeniería Industrial (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#2.11.04 (es_ES)
https://purl.org/pe-repo/renati/level#bachiller (es_ES)
09868135
https://orcid.org/0000-0003-1297-5510 (es_ES)
72899332
722026 (es_ES)
https://purl.org/pe-repo/renati/type#trabajoDeInvestigacion (es_ES)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons