Look-up in Google Scholar
Title: Integración estocástica y tiempo local
Advisor(s): Farfán Vargas, Jonathan Samuel
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 20-Feb-2018
Institution: Pontificia Universidad Católica del Perú
Abstract: En el presente trabajo presentamos una construcción del movimiento browniano para lo cual probaremos en forma detallada los teoremas de extensión de Kolmogorov y el de Kolmogorov-Censot, luego hacemos una construcción detallada y autocontenida de la integral estocástica en la que los integradores son martingalas continuas cuadrado integrables. Esta es una posible extensión a la clásica integral de Itô en la cual el integrador es un movimiento browniano. En este contexto de integración estocástica enunciaremos y probaremos la fórmula de Itô y algunas de sus consecuencias. Finalmente trabajaremos con el tiempo local, la fórmula de Tanaka y estudiaremos una particular prueba.

In this investigation we show a construction of the Brownian motion, which includes detailed proofs of the Kolmogorov's extension theorem and Kolmogorov-Censot theorem. In addition, we will show a detailed construction and self-contained of the stochastic integral in wich integrators are continuous square integrable martingales. This is one of the possible extensions to classical Itô's integral in which the integrator is a Brownian motion. In this context of stochastic integration we prove an Itô's formula version. Finally, we study a relationship between local time and Tanaka's formula.
Discipline: Matemáticas
Grade or title grantor: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grade or title: Maestro en Matemáticas
Register date: 20-Feb-2018



This item is licensed under a Creative Commons License Creative Commons