Citas bibligráficas
Huaylla, M., (2022). Inmersiones isométricas de variedades completas con curvatura negativa en espacios euclidianos [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/23842
Huaylla, M., Inmersiones isométricas de variedades completas con curvatura negativa en espacios euclidianos []. PE: Pontificia Universidad Católica del Perú; 2022. http://hdl.handle.net/20.500.12404/23842
@mastersthesis{renati/536567,
title = "Inmersiones isométricas de variedades completas con curvatura negativa en espacios euclidianos",
author = "Huaylla Salomé, Miguel Angel",
publisher = "Pontificia Universidad Católica del Perú",
year = "2022"
}
The pseudo-spherical surfaces locally have the same geometry as H2, furthermore we can obtain a realization (isometric immersion) of a horodisk of H2 in the pseudo-sphere. Will all H2 in R3 be realized as a surface without singularities? Is there a complete manifold with constant negative curvature that can be realized on R3? A negative answer is given by the Hilbert's theorem. Is it really essential that the curvature be constant as an assumption in this theorem? Is it possible to weaken the hypotheses of this theorem so that the conclusion holds? We will find the answers to these questions in Efimov's theorem. Will there exist some integer p such that H2 can be realized in Rp? Can the answer to the previous question be generalized to Hn? As the last objective of this work, it is to study in detail the Blanusa theorem who manages to answer these questions, in an afirmative way. Subsequently, Rozendorn, Henke-Nettekoven and Azov reduced the codimension of these realizations, using the method proposed by Blanusa, which will be explained in detail.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons