Look-up in Google Scholar
Full metadata record
Beltrán Castañón, César Armando
Pineda Ancco, Ferdinand Edgardo (es_ES)
2020-03-18T00:42:20Z
2020-03-18T00:42:20Z
2020
2020-03-17
http://hdl.handle.net/20.500.12404/16137
Recently, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a Peruvian satellite, which serve as the reference for the superresolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR), the Structural Similarity (SSIM) and the Erreur Relative Globale Adimensionnelle de Synth`ese (ERGAS). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well. (es_ES)
Trabajo de investigación (es_ES)
eng (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/closedAccess (es_ES)
Satélites artificiales en telecomunicaciones (es_ES)
Procesamiento de imágenes digitales (es_ES)
A generative adversarial network approach for super resolution of sentinel-2 satellite images (es_ES)
info:eu-repo/semantics/masterThesis (es_ES)
Pontificia Universidad Católica del Perú. Escuela de Posgrado (es_ES)
Informática con mención en Ciencias de la Computación (es_ES)
Maestría (es_ES)
Maestro en Informática con mención en Ciencias de la Computación (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#1.02.00 (es_ES)
https://purl.org/pe-repo/renati/level#maestro (es_ES)
29561260
https://orcid.org/0000-0002-0173-4140 (es_ES)
611087 (es_ES)
http://purl.org/pe-repo/renati/type#trabajoDeInvestigacion (es_ES)
Privada asociativa



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.