Look-up in Google Scholar
Full metadata record
Stucchi Portocarrero, Luciano
Matus de la Parra Gutiérrez, Nicolás
2021-09-23T03:39:59Z
2021-09-23T03:39:59Z
2021
2021-09-22
http://hdl.handle.net/20.500.12404/20417
We present comments on an article published by Villacañas de Castro and Hoffmeister (2020). The authors studied a tritrophic system composed of a plant, its pollinating seed predator, and a parasitoid of the latter. Their concern was whether the parasitoid modifies the interaction between the plant and its pollinator-herbivore along the mutualism-antagonism gradient, but they reduced their question to how the parasitoid impacts plant fitness. After showing that the parasitoid increases seed output of the plant by decreasing the amount of seeds consumed by the pollinating seed predator, they tested whether seed output is a good proxy for plant fitness. They argue that it is not by showing that the increased seed density has a negative impact in survival probability and flower production, likely due to plant intraspecific competition. The work presented shows careful experimentation and interesting results, but we do not share some of their conclusions. Most importantly, we believe that the net effect of the parasitoid on the plant-herbivore interaction can’t be adequately investigated by focusing on individual plant fitness. Thus, we first suggest considering the number of surviving plants up to adulthood as a proxy for population performance to address this question. Using this proxy, we show that the increase in seed output due to the parasitoid is beneficial to the plant population until its carrying capacity is achieved. Next, using a population dynamics model, we show under which particular conditions the negative effect of intraspecific competition outweighs the positive effect of seed density increase (due to parasitoid’s defense). When these conditions don’t hold, the role of plant intraspecific competition is basically limited to the prevention of unbounded population growth, while the parasitoid’s net effect is an increase in the plant’s equilibrium density over its carrying capacity when interacting only with the pollinating seed predator, thus making the system more stable. (es_ES)
eng (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ (*)
Probabilidades (es_ES)
Insectos (es_ES)
Plantas (es_ES)
The role of intraspecific competition between plants in a nursery pollination system (es_ES)
info:eu-repo/semantics/bachelorThesis (es_ES)
Pontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería (es_ES)
Ciencias con mención en Física (es_ES)
Bachillerato (es_ES)
Bachiller en Ciencias con mención en Física (es_ES)
PE (es_ES)
http://purl.org/pe-repo/ocde/ford#1.03.00 (es_ES)
https://purl.org/pe-repo/renati/level#bachiller (es_ES)
40799863
77217732
533056 (es_ES)
https://purl.org/pe-repo/renati/type#trabajoDeInvestigacion (es_ES)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons