Buscar en Google Scholar
Registro completo de metadatos
Rosas Bazán, Rudy José
Suárez Navarro, Pedro Iván (es_ES)
2015-07-07T20:06:04Z (es_ES)
2015-07-07T20:06:04Z (es_ES)
2014 (es_ES)
2015-07-07 (es_ES)
http://hdl.handle.net/20.500.12404/6128
En el presente trabajo se estudia la dinámica de los homeomorfismos de la circunferencia unitaria desde el punto de vista topológico. A cada homeomorfismo de tal circunferencia se le puede asociar un invariante topológico, conocido como el número de rotación de Poincaré. Se muestra que si f es un homeomorfismo que preserva orientación con número de rotación irracional, entonces f es semiconjugado a una rotación irracional. Cuando el difeomorfismo es de clase C2 se consigue incluso conjugación topológica. Además, se construye un difeomorfismo de la circunferencia unitaria no transitivo de clase C1 cuyo número de rotación es irracional. (es_ES)
Tesis (es_ES)
spa (es_ES)
Pontificia Universidad Católica del Perú (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ (*)
Difeomorfismos (es_ES)
Topología algebraica (es_ES)
Espacios topológicos (es_ES)
Aspectos dinámicos de los homeomorfismos y difeomorfismos del círculo (es_ES)
info:eu-repo/semantics/masterThesis (es_ES)
Pontificia Universidad Católica del Perú. Escuela de Posgrado (es_ES)
Matemáticas (es_ES)
Maestría (es_ES)
Maestro en Matemáticas (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#1.01.00 (es_ES)
https://purl.org/pe-repo/renati/level#maestro (es_ES)
40037412
541137 (es_ES)
http://purl.org/pe-repo/renati/type#tesis (es_ES)
Privada asociativa



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons