Bibliographic citations
Pereyra, P., (2023). Nuevo enfoque para estudiar la respuesta del detector LR-115 al 222Rn, 220Rn y progenie. Aplicación en mediciones de radón en interiores de Lima, Perú [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/25757
Pereyra, P., Nuevo enfoque para estudiar la respuesta del detector LR-115 al 222Rn, 220Rn y progenie. Aplicación en mediciones de radón en interiores de Lima, Perú []. PE: Pontificia Universidad Católica del Perú; 2023. http://hdl.handle.net/20.500.12404/25757
@phdthesis{renati/533741,
title = "Nuevo enfoque para estudiar la respuesta del detector LR-115 al 222Rn, 220Rn y progenie. Aplicación en mediciones de radón en interiores de Lima, Perú",
author = "Pereyra Anaya, Patrizia Edel",
publisher = "Pontificia Universidad Católica del Perú",
year = "2023"
}
This work focuses on the study of radioactivity, particularly on the measurement of indoor radon gas. The main objective is to present an alternative method for radon measurement using solid-state nuclear track detectors (SSNTDs), enabling medium or large-scale monitor- ing and estimating the equivalency of measurements made with bare detectors and diffusion chambers. Radioactivity is an inherent part of the human environment, and exposures to higher doses have been experienced in the past to our days. Both cosmogenic and terrestrial radionuclides are present in food, water, building materials, and living organisms. However, due to rapid and artificial changes in the environment, nature cannot mitigate them at the same pace. Ionizing radiations can have harmful effects on biological and ecological systems, such as tissue degeneration and the development of neoplasms. Preliminary studies in Peru indicate that the population receives doses comparable to the global average values, with significant contributions from radon gas. However, there are no established intervention values by the official organizations in Peru, highlighting the need for a study to determine the concentration of radon gas in the country and establish accurate local values. Certain locations in the world are known to have high radon concentrations, raising the possibility of anomalous areas in Peru as well. Regarding the methodology, cellulose nitrate nuclear track detectors (LR-115) will be used in bare mode, and a novel approach for their calibration is proposed. The structure of the work is also described, with chapters dedicated to natural radioactivity, radon measurement methods, LR-115 detector analysis, detector calibration, and radon monitoring results in the city of Lima. The work concludes by emphasizing the importance of establishing regulations and recommendations for protection against ionizing radiation from radon in homes and workplaces in Peru. The obtained results will be used to establish concentration limits and intervention values for radon, providing a database for the creation of a radiological map of Peru.
This item is licensed under a Creative Commons License