Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Soldevilla, A., (2022). El browniano fraccionario y el cálculo de Malliavin en las finanzas cuantitativas [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/21857
Soldevilla, A., El browniano fraccionario y el cálculo de Malliavin en las finanzas cuantitativas []. PE: Pontificia Universidad Católica del Perú; 2022. http://hdl.handle.net/20.500.12404/21857
@mastersthesis{renati/531980,
title = "El browniano fraccionario y el cálculo de Malliavin en las finanzas cuantitativas",
author = "Soldevilla Cueva, Abraham Alonso",
publisher = "Pontificia Universidad Católica del Perú",
year = "2022"
}
Title: El browniano fraccionario y el cálculo de Malliavin en las finanzas cuantitativas
Authors(s): Soldevilla Cueva, Abraham Alonso
Advisor(s): Alos Alcalde, Elisa
Keywords: Finanzas--Modelos matemáticos; Matemática financiera; Derivados financieros--Modelos matemáticos--Precios
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.02
Issue Date: 22-Mar-2022
Institution: Pontificia Universidad Católica del Perú
Abstract: Podemos definir “Finanzas cuantitativas“ como la rama de las finanzas donde se desarrollan
e implementan modelos matemáticos complejos, los cuales usarán las empresas para tomar
decisiones sobre la gestión de riesgos, futuras inversiones y los precios de nuevos productos
financieros. El objetivo de la investigación es presentar el Movimiento Browniano Fraccionario
y Elementos del Cálculo de Malliavin en su uso para determinar el precio de los derivados
financieros. Con el fin de mostrar como son aplicados diversos objetos matematicos y sus
contextos en las Finanzas cuantitativas replico los tres resultados sobre derivados de volatilidad
propuestos en 2009 por Peter Carr y Roger Lee en su publicación titulada “Volatility
Derivatives[8]“, los cuales se evalúan mediante ejercicios de simulación y utilizando el cálculo
de Malliavin, siguiendo el trabajo de Elisa Àlos y Kenichiro Shiraya titulado “Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach“.
We can define “Quantitative Finance“ as the branch of finance that develop and/or implement complex matematical models, which are used by financial firms to make decisions about risk management, future investments and pricing of new financial products. The objective in this research is to show which mathematical objects are used in quantitative finance for derivatives pricing. My main focus are the stochastic process knows as Fractional Brownian Motion and the elements from Malliavin Stochastic Calculus. Given that my goal is to show how several mathematical objects and their context are apply in quantitative finance, I replicate three results about volatility derivatives from Peter Carr and Roger Lee publication “Volatility Derivatives“ and evaluate them using simulation exercises and Malliavin Calculus, following the work publish in 2019 by Elisa Àlos and Kenichiro Shiraya with the name “Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach“.
We can define “Quantitative Finance“ as the branch of finance that develop and/or implement complex matematical models, which are used by financial firms to make decisions about risk management, future investments and pricing of new financial products. The objective in this research is to show which mathematical objects are used in quantitative finance for derivatives pricing. My main focus are the stochastic process knows as Fractional Brownian Motion and the elements from Malliavin Stochastic Calculus. Given that my goal is to show how several mathematical objects and their context are apply in quantitative finance, I replicate three results about volatility derivatives from Peter Carr and Roger Lee publication “Volatility Derivatives“ and evaluate them using simulation exercises and Malliavin Calculus, following the work publish in 2019 by Elisa Àlos and Kenichiro Shiraya with the name “Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach“.
Link to repository: http://hdl.handle.net/20.500.12404/21857
Discipline: Matemáticas Aplicadas con mención en Procesos Estocásticos
Grade or title grantor: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grade or title: Maestro en Matemáticas Aplicadas con mención en Procesos Estocásticos
Juror: Gasco Campos, Loretta Betzabe Rosa; Alos Alcalde, Elisa; Jordan Liza, Abelardo
Register date: 22-Mar-2022
This item is licensed under a Creative Commons License