Bibliographic citations
Donayre, G., (2024). Evaluación de método para la detección automática de puntos de referencia (landmark detection) en imágenes en dos dimensiones de huellas plantares para el diseño de una plantilla ortopédica [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/28743
Donayre, G., Evaluación de método para la detección automática de puntos de referencia (landmark detection) en imágenes en dos dimensiones de huellas plantares para el diseño de una plantilla ortopédica []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/28743
@mastersthesis{renati/531506,
title = "Evaluación de método para la detección automática de puntos de referencia (landmark detection) en imágenes en dos dimensiones de huellas plantares para el diseño de una plantilla ortopédica",
author = "Donayre Gamboa, Gustavo Miguel",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
This paper evaluates the heatmap regression (HR) technique for landmark detection in medical images, specifically in two- dimensional footprint images. The study is based on heatmap regression with deep learning, a technique that has proven to be effective in face landmark detection and human pose estimation. We propose the evaluation of an automatic method for the detection of 8 points in the digitized images of plantar footprints that will serve as a reference for the base design of a two-dimensional orthopedic insole, thus seeking to improve the orthopedic insole manufacturing process, which is currently handmade and handcrafted in most Latin American countries. The automatic detection of reference points in the plantar footprints would speed up this process and improve the accuracy of the insoles. The results of the study showed an average normalized mean absolute error of 0.01017 in the validation set. These evaluations were carried out using a U-Net convolutional network, which consists of an image encoding and compression path to capture the context, and a symmetric expansion path that allows accurate localization of points of interest in a reasonable amount of time with current GPU processors.
This item is licensed under a Creative Commons License