Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Mendez, J., (2023). Pronóstico de pérdidas por flujo de dispersión en la tapa del transformador eléctrico [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/26087
Mendez, J., Pronóstico de pérdidas por flujo de dispersión en la tapa del transformador eléctrico []. PE: Pontificia Universidad Católica del Perú; 2023. http://hdl.handle.net/20.500.12404/26087
@mastersthesis{renati/530695,
title = "Pronóstico de pérdidas por flujo de dispersión en la tapa del transformador eléctrico",
author = "Mendez Giron, Jorge Luis",
publisher = "Pontificia Universidad Católica del Perú",
year = "2023"
}
Title: Pronóstico de pérdidas por flujo de dispersión en la tapa del transformador eléctrico
Authors(s): Mendez Giron, Jorge Luis
Advisor(s): Moreno Alamo, Ana Cecilia
OCDE field: https://purl.org/pe-repo/ocde/ford#2.07.03
Issue Date: 5-Oct-2023
Institution: Pontificia Universidad Católica del Perú
Abstract: El presente trabajo describe la generación de pérdidas en la plancha de fierro, por inducción de
campo magnético, ante conductores energizados que atraviesan la plancha.
Para detallar el fenómeno se utilizó formulación matemática, simulación numérica y
experimentación. Para cada metodología se utilizó distintos escenarios de conductores energizados
a distintas corrientes eléctricas (1000 A, 1500 A, 2000 A, 2500 A y 3000 A).
Primero, se analizó una plancha de fierro, cuyo resultado mostró que solo las pérdidas por
acoplamiento magnético, si no son controladas, afectan a la eficiencia del transformador, además,
por experimentación se evidenció la generación de puntos calientes.
Segundo, se analizó la mitigación de estas pérdidas con un inserto de acero inoxidable AISI 304,
lo cual provocó que las pérdidas no se incrementen; por lo tanto, la eficiencia no se ve afectada.
Además, producto de la mitigación de pérdidas, se verificó por prueba la eliminación de puntos
calientes.
Los resultados a distintas corrientes (1000 A, 1500 A, 2000 A, 2500 A y 3000 A) son presentados
en gráficas que muestran los resultados en las distintas metodologías.
The present document describes the generation of losses in the iron plate, due to magnetic field induction, when energized conductors cross the plate. Mathematical formulation, numerical simulation and experimentation were used to detail the phenomenon. For each methodology, different scenarios of energized conductors at different electric currents (1000 A, 1500 A, 2000 A, 2500 A and 3000 A) were used. First, an iron plate was analyzed, the result showed that losses due to magnetic coupling, if not controlled, affect the efficiency of the transformer, also by experimentation, the generation of hot spots was evidenced. Second, the mitigation of these losses was analyzed with an AISI 304 stainless steel insert, which caused the losses not to increase; therefore, the efficiency is not affected. In addition, as a result of the loss mitigation, the elimination of hot spots was verified by test. The results at different currents (1000 A, 1500 A, 2000 A, 2500 A and 3000 A) are presented in graphs showing the results in the different methodologies.
The present document describes the generation of losses in the iron plate, due to magnetic field induction, when energized conductors cross the plate. Mathematical formulation, numerical simulation and experimentation were used to detail the phenomenon. For each methodology, different scenarios of energized conductors at different electric currents (1000 A, 1500 A, 2000 A, 2500 A and 3000 A) were used. First, an iron plate was analyzed, the result showed that losses due to magnetic coupling, if not controlled, affect the efficiency of the transformer, also by experimentation, the generation of hot spots was evidenced. Second, the mitigation of these losses was analyzed with an AISI 304 stainless steel insert, which caused the losses not to increase; therefore, the efficiency is not affected. In addition, as a result of the loss mitigation, the elimination of hot spots was verified by test. The results at different currents (1000 A, 1500 A, 2000 A, 2500 A and 3000 A) are presented in graphs showing the results in the different methodologies.
Link to repository: http://hdl.handle.net/20.500.12404/26087
Discipline: Energía
Grade or title grantor: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grade or title: Maestro en Energía
Juror: Jimenez Ugarte, Fernando Octavio; Moreno Alamo, Ana Cecilia; Rosario Quinteros, Eduardo Raul
Register date: 5-Oct-2023
This item is licensed under a Creative Commons License