Look-up in Google Scholar
Title: Metodología de simulación con inteligencia artificial en la planificación y control de la producción, en sistemas de manufactura de fundición
Advisor(s): Durand Porras, Juan Carlos
OCDE field: https://purl.org/pe-repo/ocde/ford#2.11.04
Issue Date: 4-Jun-2021
Institution: Universidad Privada del Norte
Abstract: El estudio realizado bajo la modalidad de tesis tuvo como objetivo general determinar cómo una metodología de Simulación con Inteligencia Artificial permite ayudar en la Planificación y Control de la Producción, en sistemas de Manufactura de Fundición. Dicha metodología utiliza las redes neuronales artificiales (RNA) para pronosticar los costos de parada de la línea trefiladora del área de producción, se eligió esta metodología para dar respuesta a un problema de la empresa, en la que se detectó altas paradas de la línea trefiladora. Para el diagnóstico del problema se recurrió a él diagrama de Ishikawa y diagrama de Pareto, identificando en la línea los equipos que generan horas altas de parada, para luego proceder a la aplicación de una metodología basado en Redes Neuronales Artificiales en el pronóstico del costo de parada. Se utilizo la herramienta Neural Net Works de Matlab para la fase de topología, configuración, aprendizaje, entrenamiento y pronostico basados en la RNA Perceptrón Multicapa. Los resultados de la investigación permitieron determinar el resultado de pronóstico del costo de parada, con un error de la RNA de 13.86%, que es menor obtenido por el experto que fue de 37.08% con respecto a los montos reales. Con los tiempos de parada de línea obtenidos atreves del pronóstico en los meses de marzo, abril, mayo y junio del 2019, se propone un plan de mantenimiento autónomo que reduzca en un 30% los tiempos de parada de la línea, lo cual aumentaría la producción en marzo, en 6.327tn, para abril en 2.595tn, para mayo en 3.105tn y para junio en 5.842tn, generando ingresos adicionales en marzo con un monto de S/17,112.15, en abril de S/7,024.99, en mayo de S/8,398.46 y en junio de S/15,783.71 del 2019, los cuales suman un ingreso total de S/48,319.31.

The study carried out under the modality of the thesis had as a general objective to determine how a Simulation methodology with Artificial Intelligence allows to help in the Planning and Control of Production, in Foundry Manufacturing systems. This methodology uses artificial neural networks (ANN) to forecast the shutdown costs of the drawing line in the production area, this methodology was chosen to respond to a problem of the company, in which high stops of the drawing line were detected . For the diagnosis of the problem, the Ishikawa diagram and Pareto diagram were used, identifying on the line the equipment that generate high stop hours, and then proceed to the application of a methodology based on Artificial Neural Networks in the forecast of the cost of stop. The Neural Net Works tool from Matlab was used for the topology, configuration, learning, training and forecasting phase based on the Multilayer Perceptron RNA. The results of the investigation allowed determining the forecast result of the shutdown cost, with an error of the ANN of 13.86%, which is lower than obtained by the expert, which was 37.08% with respect to the real amounts. With the line stop times obtained through the forecast in the months of March, April, May and June 2019, an autonomous maintenance plan is proposed that reduces line stop times by 30%, which would increase the production in March, in 6,327tn, for April in 2,595tn, for May in 3,105tn and for June in 5,842tn, generating additional income in March with an amount of S / 17,112.15, in April of S / 7,024.99, in May of S /8,398.46 and in June of S / 15,783.71 of 2019, which add up to a total income of S / 48,319.31.
Discipline: Ingeniería Industrial
Grade or title grantor: Universidad Privada del Norte. Facultad de Ingeniería
Grade or title: Ingeniero Industrial
Juror: Ortega Saco, Juan Alejandro; Piscoya Silva, Ulises Abdon; Rivadeneyra Cuya, Aldo Guillermo
Register date: 11-Oct-2021



This item is licensed under a Creative Commons License Creative Commons