Bibliographic citations
Bardales, C., Zamora, C. (2020). Evaluación de los criterios de selección de un método de explotación mediante la inteligencia artificial. Caso práctico yacimiento de hierro en Ventanillas, Yonán, Cajamarca, 2019 [Tesis, Universidad Privada del Norte]. https://hdl.handle.net/11537/23835
Bardales, C., Zamora, C. Evaluación de los criterios de selección de un método de explotación mediante la inteligencia artificial. Caso práctico yacimiento de hierro en Ventanillas, Yonán, Cajamarca, 2019 [Tesis]. PE: Universidad Privada del Norte; 2020. https://hdl.handle.net/11537/23835
@misc{renati/516389,
title = "Evaluación de los criterios de selección de un método de explotación mediante la inteligencia artificial. Caso práctico yacimiento de hierro en Ventanillas, Yonán, Cajamarca, 2019",
author = "Zamora Muñoz, Carlos",
publisher = "Universidad Privada del Norte",
year = "2020"
}
In this quantitative research, correlational level and non-experimental cross-sectional design, the objective was to evaluate the criteria involved in the selection of a method of mining exploitation with the application of Artificial Intelligence, having as its case the application to the Iron Field located in the town of Ventanillas, district of Yonán. 7 algorithms of Artificial Neural Networks (RNA) were developed in Matlab, considering as input data to 21 sub-criteria grouped into 5 General Criteria. And as possible outputs 9 methods of exploitation. After an RNA training process, the test was carried out with data obtained from the Site under study. There was a proven performance between the range 80% and 95% and an average error between 6% and 16%, which allowed us to successfully estimate the most appropriate method of exploitation alternative. The criteria with greater efficiency in the results of the study are mainly geological and geomechanical. The criteria related to the environmental and technological economic aspects have not been tested efficiently since there has been no availability of historical data that allow us to strengthen the learning process of the applied artificial neural networks.
This item is licensed under a Creative Commons License