Bibliographic citations
Herrera, A., Frias, M. (2024). Propuesta de mejora en la gestión de compras de repuestos en una empresa de Renting operacional implementando un sistema de predicción de demanda con Machine Learning y el modelo de inventarios [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/675525
Herrera, A., Frias, M. Propuesta de mejora en la gestión de compras de repuestos en una empresa de Renting operacional implementando un sistema de predicción de demanda con Machine Learning y el modelo de inventarios [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/675525
@misc{renati/502857,
title = "Propuesta de mejora en la gestión de compras de repuestos en una empresa de Renting operacional implementando un sistema de predicción de demanda con Machine Learning y el modelo de inventarios",
author = "Frias Pareja, Manuel Alonso",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
This project focused on optimizing the inventory and maintenance management of vehicles of an operational leasing company through three key solutions: the implementation of a machine learning model for auto parts demand forecasting, the development of a cyclic counting system and the creation of a supplier management plan. The implementation of the machine learning model significantly improved the precision of the demand forecasts, reaching 70% accuracy. This optimized the availability of auto parts, reducing stock-outs from 102 to 50 units per month and increasing the spare parts availability rate from 96.1% to 98%. In addition, the average vehicle maintenance time was reduced from 4.1 days to 3 days, increasing the fleet's operability and availability. The cyclic counting system implemented reduced inventory discrepancies from 44 to 5 units per average count in each workshop, improving inventory accuracy and efficiency. In parallel, the supplier management plan strengthened supplier relationships, ensuring constant availability of critical spare parts and improving contractual terms. In conclusion, the solutions implemented have proven to be highly effective, significantly improving operational efficiency, spare parts availability, and customer satisfaction.
This item is licensed under a Creative Commons License