Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Manrique, S., Sanchez, C. (2019). Compras eficientes - supermercados [Universidad de Lima]. https://hdl.handle.net/20.500.12724/12357
Manrique, S., Sanchez, C. Compras eficientes - supermercados []. PE: Universidad de Lima; 2019. https://hdl.handle.net/20.500.12724/12357
@misc{renati/502121,
title = "Compras eficientes - supermercados",
author = "Sanchez Rubio, Carlos Javier",
publisher = "Universidad de Lima",
year = "2019"
}
Title: Compras eficientes - supermercados
Advisor(s): Lewis Fuentes, Winston
Keywords: Comercio electrónico; Supermercados; Minería de datos; Electronic commerce; Supermarkets; Data mining
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2019
Institution: Universidad de Lima
Abstract: Los clientes de supermercados siempre están en busca de descuentos y rebajas en los productos que suelen comprar, pero lamentablemente casi nunca reciben ofertas orientadas a lo que realmente necesitan. Por el contrario, las ofertas a las que están
expuestos sólo atienden un conjunto de deseos que no terminan generando valor.
La propuesta busca atender la situación descrita, es decir, busca desarrollar una solución que pueda agilizar el proceso de compra digital, permitiendo a los clientes obtener un conjunto de ofertas personalizadas basado en sus preferencias o costumbres de compra.
Para ello, se propone el uso de un algoritmo colaborativo, el mismo que permitirá realizar un cálculo de agrupamiento que determinará el sitio web (página e-commerce) del Supermercado donde se encuentren productos más económicos. Para poder presentar el resultado, el algoritmo evaluará el conjunto de precios más bajos del mercado, así como las diferentes decisiones que los clientes vayan tomando al momento de seleccionar las diferentes ofertas que haya recibido.
La propuesta incluye el desarrollo de métodos de correlación y clustering, además del uso de tecnologías que permitirán que el sistema aprenda de manera constante; de esta manera se podrá asegurar que la solución propuesta pueda brindar diferentes
alternativas de escogencia acorde a los cambios que se pudieran producir en el proceso de compra, así como acorde a sus nuevas necesidades o costumbres.
Supermarket customers are always looking for discounts and rebates on the products they usually buy, but unfortunately, they almost never receive offers aimed at what they really need. On the contrary, the offers to which they are exposed only serve a set of desires that do not end up generating value. The proposal seeks to address the situation described, that is, seeks to develop a solution that can expedite the digital purchase process, allowing customers to obtain a set of personalized offers based on their preferences or purchasing customs. For this, the use of a collaborative algorithm is proposed, the same that will allow a grouping calculation that will determine the website (e-commerce page) of the Supermarket where more economical products are found. In order to present the result, the algorithm will evaluate the set of lowest prices in the market, as well as the different decisions that customers are making when selecting the different offers they have received. The proposal includes the development of correlation and clustering methods, in addition to the use of technologies that will allow the system to learn constantly; in this way it will be possible to ensure that the proposed solution can provide different lternatives of choice according to the changes that could occur in the purchase process, as well as according to their new needs or customs.
Supermarket customers are always looking for discounts and rebates on the products they usually buy, but unfortunately, they almost never receive offers aimed at what they really need. On the contrary, the offers to which they are exposed only serve a set of desires that do not end up generating value. The proposal seeks to address the situation described, that is, seeks to develop a solution that can expedite the digital purchase process, allowing customers to obtain a set of personalized offers based on their preferences or purchasing customs. For this, the use of a collaborative algorithm is proposed, the same that will allow a grouping calculation that will determine the website (e-commerce page) of the Supermarket where more economical products are found. In order to present the result, the algorithm will evaluate the set of lowest prices in the market, as well as the different decisions that customers are making when selecting the different offers they have received. The proposal includes the development of correlation and clustering methods, in addition to the use of technologies that will allow the system to learn constantly; in this way it will be possible to ensure that the proposed solution can provide different lternatives of choice according to the changes that could occur in the purchase process, as well as according to their new needs or customs.
Link to repository: https://hdl.handle.net/20.500.12724/12357
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad de Lima. Facultad de Ingeniería y Arquitectura
Grade or title: Ingeniero de Sistemas
Register date: 22-Jan-2021
This item is licensed under a Creative Commons License