Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Cuzcano, X., (2020). A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter [Universidad de Lima]. https://hdl.handle.net/20.500.12724/12718
Cuzcano, X., A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter []. PE: Universidad de Lima; 2020. https://hdl.handle.net/20.500.12724/12718
@misc{renati/501607,
title = "A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter",
author = "Cuzcano Chavez, Ximena Marianne",
publisher = "Universidad de Lima",
year = "2020"
}
Full metadata record
Ayma Quirita, Víctor Hugo
Cuzcano Chavez, Ximena Marianne
2021-03-16T22:42:34Z
2021-03-16T22:42:34Z
2020
Cuzcano Chavez, X. M. (2020). A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12718 (es_PE)
https://hdl.handle.net/20.500.12724/12718
Cyberbullying is a social problem in which bullies’
actions are more harmful than in traditional forms of bullying as
they have the power to repeatedly humiliate the victim in front of
an entire community through social media. Nowadays, multiple
works aim at detecting acts of cyberbullying via the analysis of
texts in social media publications written in one or more
languages; however, few investigations target the cyberbullying
detection in the Spanish language. In this work, we aim to
compare four traditional supervised machine learning methods
performances in detecting cyberbullying via the identification of
four cyberbullying-related categories on Twitter posts written in
the Peruvian Spanish language. Specifically, we trained and
tested the Naive Bayes, Multinomial Logistic Regression, Support
Vector Machines, and Random Forest classifiers upon a
manually annotated dataset with the help of human participants.
The results indicate that the best performing classifier for the
cyberbullying detection task was the Support Vector Machine
classifier. (es_PE)
application/pdf (es_PE)
eng (es_PE)
Universidad de Lima (es_PE)
info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/ (*)
Repositorio Institucional - Ulima (es_PE)
Universidad de Lima (es_PE)
Ciberacoso (es_PE)
Blogs (es_PE)
Acoso moral (es_PE)
Cyberbullying (es_PE)
Bullying (es_PE)
Ingeniería de sistemas / Diseño y métodos (es_PE)
A comparison of classification models to detect cyberbullying in the peruvian spanish language on Twitter (es_PE)
info:eu-repo/semantics/bachelorThesis (*)
Universidad de Lima. Facultad de Ingeniería y Arquitectura (es_PE)
Ingeniería de sistemas (es_PE)
Título profesional (es_PE)
Ingeniero de sistemas (es_PE)
PE (es_PE)
https://purl.org/pe-repo/ocde/ford#2.02.04
http://purl.org/pe-repo/renati/level#tituloProfesional
45025095
https://orcid.org/0000-0002-0284-2610
76438232
612076
Rodriguez-Rodriguez-Nadia-Katherine
Ramos-Ponce, Oscar-Efrai
Quintana-Cruz, Hernan-Alejandro
https://purl.org/pe-repo/renati/type#tesis (*)
Privada asociativa
This item is licensed under a Creative Commons License