Bibliographic citations
Mendoza, M., Sánchez, C. (2024). Determinación de la magnitud y potencial de colapso del suelo de la avenida Cerro la Virgen del sector El Tablazo del distrito de Huanchaco- provincia de Trujillo-departamento de la Libertad [Tesis, Universidad Privada Antenor Orrego]. https://hdl.handle.net/20.500.12759/39531
Mendoza, M., Sánchez, C. Determinación de la magnitud y potencial de colapso del suelo de la avenida Cerro la Virgen del sector El Tablazo del distrito de Huanchaco- provincia de Trujillo-departamento de la Libertad [Tesis]. PE: Universidad Privada Antenor Orrego; 2024. https://hdl.handle.net/20.500.12759/39531
@misc{renati/499692,
title = "Determinación de la magnitud y potencial de colapso del suelo de la avenida Cerro la Virgen del sector El Tablazo del distrito de Huanchaco- provincia de Trujillo-departamento de la Libertad",
author = "Sánchez Miranda, Cristopher David",
publisher = "Universidad Privada Antenor Orrego",
year = "2024"
}
The field of soil mechanics has progressed from its initial focus on saturated soils to a more comprehensive understanding that includes unsaturated soils, which constitute a significant part of man-made structures. These soils can undergo changes in moisture content, affecting their physical and mechanical properties. Inadequate study of soil mechanics can lead to building collapses, underscoring the necessity of conducting prior soil assessments in any construction project. The geotechnical stability of unsaturated natural soils is crucial for preventing natural disasters. Issues such as low dry density and high void ratio can result in soil collapse, particularly in arid and semi-arid areas. In the specific case of Cerro la Virgen avenue, challenges related to soil saturation were encountered during construction. Most dwellings in the locality are constructed with brick or concrete blocks and have access to public water supply. The terrain in the Huanchaco region exhibits modest elevation variations, with significant water coverage in surrounding areas. Detailed analysis of the geotechnical study results provides a profound understanding of soil behavior in the study area. It was determined that the soil has a low collapse potential, with a value below 0.25, indicating less susceptibility to collapse under load compared to soils with higher collapse potential. This finding is crucial for the safety and stability of structures to be built on the studied land. The field exploration program involved the execution of six test pits, identifying two main strata in each. The first consisted of soil classified as silty sand with gravel, while the second stratum comprised poorly graded gravel with sand. In one of the test pits, a third stratum consisting of poorly graded gravel with silt and sand was found. SPT and DPL tests revealed crucial data on soil bearing capacity, with values ranging from 3.21 kg/cm² to 3.81 kg/cm² at a depth of 1.00 meter. These results are essential for the design of appropriate foundations and ensuring structural stability. The analysis of soil collapse potential was conducted following the guidelines of the National Building Code, ensuring the reliability and validity of the obtained results. The thesis provided a solid theoretical framework by defining VIII basic concepts related to the assessment of soil collapse potential and its associated degree. This knowledge is fundamental for minimizing geotechnical risks inherent in civil engineering and construction, ensuring the safety and stability of structures.
This item is licensed under a Creative Commons License