Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Gil, E., Rodríguez, E. (2010). Sistema de pronóstico de la demanda de productos farmacéuticos basado en redes neuronales [Tesis, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/3222
Gil, E., Rodríguez, E. Sistema de pronóstico de la demanda de productos farmacéuticos basado en redes neuronales [Tesis]. PE: Universidad Nacional Mayor de San Marcos; 2010. https://hdl.handle.net/20.500.12672/3222
@misc{renati/488169,
title = "Sistema de pronóstico de la demanda de productos farmacéuticos basado en redes neuronales",
author = "Rodríguez Collas, Enith",
publisher = "Universidad Nacional Mayor de San Marcos",
year = "2010"
}
Title: Sistema de pronóstico de la demanda de productos farmacéuticos basado en redes neuronales
Authors(s): Gil Zavaleta, Eybi; Rodríguez Collas, Enith
Advisor(s): Mauricio Sánchez, David Santos
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2010
Institution: Universidad Nacional Mayor de San Marcos
Abstract: La supervivencia en los negocios altamente competitivos de hoy requiere una visión precisa de la demanda para poner en marcha los planes de producción, inventario, distribución y compra dentro de las empresas; el sector farmacéutico no es la excepción, ues los efectos de las temporadas, promociones, cambios de precios, publicidad, productos con bajo o alto nivel de movimiento y datos atípicos en general afectan en la determinación de la misma. En este contexto, pronosticar por arriba de la demanda tiene entre sus consecuencias el excesivo inventario de fármacos, obsolescencia o caducidad, y por otro lado, pronosticar por debajo de la demanda tiene como consecuencia la pérdida de las ventas y un posible incremento en los costos. Por lo mencionado, el tema se centra en el desarrollo de un sistema que usa las técnicas de redes neuronales artificiales para el pronóstico de la demanda de productos.
En este trabajo se propone el uso de una red neuronal (Perceptrón multicapa) para el pronóstico de la demanda de productos farmacéuticos, la cual realizará su fase de aprendizaje con el algoritmo backpropagation que brinda una taza de error de 3.57% en el mejor caso encontrado; su implementación se desarrollará bajo la tecnología de MATLAB para la construcción de la red neuronal y del lenguaje JAVA para el diseño de la interfaz gráfica de usuario.
Palabras clave: Pronóstico de la demanda, Backpropagation, sector farmacéutico.
--- The survival in the highly competitive business of today needs a precise vision of the demand to put in march the plans of production, inventory, distribution and buy inside the companies; the pharmaceutical sector is not the exception, so he effects of the seasons, promotions, changes of prices, trends, products with under or high level of movement and atypical information affects in the determination of the same one. In this context, to predict overhead of the demand it as between his consequences the overstock of medicaments, obsolescence or caducity, and on the other hand, to predict below the demand has as consequence the loss of sales and the possible increase in the costs. For the mentioned, the topic centres on the development of a system that uses the technologies of Artificial Neura Networks and of the diffuse logic for the forecast of the demand of products. This paper proposes the use of a neural network (multilayer perceptron) for the prediction of demand for pharmaceuticals, which will hold its learning phase with the backpropagation algorithm that provides an error rate of 3.57%; its implementation will under MATLAB technology for building the neural network and the JAVA language for the design of the graphical user interface. Keywords: Demand forecasting, Backpropagation, Pharmaceutical sector.
--- The survival in the highly competitive business of today needs a precise vision of the demand to put in march the plans of production, inventory, distribution and buy inside the companies; the pharmaceutical sector is not the exception, so he effects of the seasons, promotions, changes of prices, trends, products with under or high level of movement and atypical information affects in the determination of the same one. In this context, to predict overhead of the demand it as between his consequences the overstock of medicaments, obsolescence or caducity, and on the other hand, to predict below the demand has as consequence the loss of sales and the possible increase in the costs. For the mentioned, the topic centres on the development of a system that uses the technologies of Artificial Neura Networks and of the diffuse logic for the forecast of the demand of products. This paper proposes the use of a neural network (multilayer perceptron) for the prediction of demand for pharmaceuticals, which will hold its learning phase with the backpropagation algorithm that provides an error rate of 3.57%; its implementation will under MATLAB technology for building the neural network and the JAVA language for the design of the graphical user interface. Keywords: Demand forecasting, Backpropagation, Pharmaceutical sector.
Link to repository: https://hdl.handle.net/20.500.12672/3222
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad Nacional Mayor de San Marcos. Facultad de Ingeniería de Sistemas e Informática. Escuela Académico Profesional de Ingeniería de Sistemas
Grade or title: Ingeniera de Sistemas
Register date: 3-Oct-2013
This item is licensed under a Creative Commons License