Look-up in Google Scholar
Full metadata record
Sobrevilla Cabezudo, Marco Antonio
Ramos Martinez, Henry Marcos
2018-03-19T14:04:49Z
2018-03-19T14:04:49Z
2017
Ramos, H. (2017). Implementación de una herramienta de análisis de riesgo de crédito basado en el modelo de rating de crédito, algoritmos genéticos y clustering jerárquico aglomerativo. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas]. Repositorio institucional Cybertesis UNMSM.
https://hdl.handle.net/20.500.12672/7145
Propone un método para generar modelos de clasificación de riesgo de crédito de acuerdo a la metodología de rating de crédito. La implementación de esta metodología requiere construir dos grandes bloques de análisis: (1) la construcción de un modelo de puntuaciones, y (2) la construcción de un modelo de agrupación de clases de riesgo. Para construir el modelo de rating, este trabajo propone el uso de dos técnicas de la inteligencia artificial: (1) el uso de algoritmos genéticos para determinar el modelo de puntuaciones óptimo, y (2) el uso de clustering jerárquico aglomerativo para la segmentación de los grupos de riesgo. Los resultados de la experimentación mostraron que la presente propuesta obtiene un buen indicador de poder de predicción (58.9%). Además, se comparó este modelo con el modelo de regresión logística (un conocido método de estimación estadística), teniendo la propuesta actual un mejor desempeño que el modelo logístico. Se concluye que las técnicas de inteligencia artificial usadas en este trabajo muestran un buen resultado para generar un modelo de rating, y tienen como ventaja la fácil interpretación de sus resultados por un experto humano.
Tesis
spa
Universidad Nacional Mayor de San Marcos
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio de Tesis - UNMSM
Universidad Nacional Mayor de San Marcos
Riesgo - Evaluación
Crédito al consumidor - Recursos en redes de computación
Algoritmos genéticos
Análisis cluster
Inteligencia artificial - Procesamiento de datos
Implementación de una herramienta de análisis de riesgo de crédito basado en el modelo de rating de crédito, algoritmos genéticos y clustering jerárquico aglomerativo
info:eu-repo/semantics/bachelorThesis
Universidad Nacional Mayor de San Marcos. Facultad de Ingeniería de Sistemas e Informática. Escuela Académico Profesional de Ingeniería de Sistemas
Ingeniería de Sistemas
Titulo Profesional
Ingeniero de Sistemas
PE
https://purl.org/pe-repo/ocde/ford#2.02.04
https://purl.org/pe-repo/renati/level#tituloProfesional
46299018
https://orcid.org/0000-0001-7625-9914
Pró Concepción, Luzmila Elisa
Rivas Peña, Marcos Hernán
https://purl.org/pe-repo/renati/type#tesis
Pública



This item is licensed under a Creative Commons License Creative Commons