Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Cueva, L., Trauco, M., Urbina, A., Vásquez, W. (2021). Control predictivo basado en Data Driven para una planta de neutralización de pH [Universidad de Piura]. https://hdl.handle.net/11042/5205
Cueva, L., Trauco, M., Urbina, A., Vásquez, W. Control predictivo basado en Data Driven para una planta de neutralización de pH []. PE: Universidad de Piura; 2021. https://hdl.handle.net/11042/5205
@misc{renati/458137,
title = "Control predictivo basado en Data Driven para una planta de neutralización de pH",
author = "Vásquez Siancas, Williams Manuel",
publisher = "Universidad de Piura",
year = "2021"
}
Title: Control predictivo basado en Data Driven para una planta de neutralización de pH
Authors(s): Cueva Chuquihuanca, Luis Ángel; Trauco Trelles, Miguel Abraham; Urbina Calderón, Anthony Aldair; Vásquez Siancas, Williams Manuel
Advisor(s): Alvarado Tabacchi, Irene; Ipanaqué Alama, William
Keywords: Control predictivo -- Aplicación; Modelos matemáticos -- Investigaciones; Ingeniería de control -- Investigaciones
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.03
Issue Date: 18-Oct-2021
Institution: Universidad de Piura
Abstract: El presente trabajo tiene por objetivo diseñar un Model Predictive Control (MPC), usando técnicas Data-driven aplicando la identificación de una planta de neutralización de pH basados en la estructura de un modelo Wiener con el fin de poder controlar la concentración de pH. El modelo Wiener consiste en desacoplar al proceso en un bloque lineal seguido de uno no lineal, ambos bloques se identificaron mediante técnicas de espacio de estados y Extreme Learning Machine (ELM) respectivamente, con la ayuda del software MatLab, consiguiendo FITs de 76.33% y 94.82%, luego se invierte el bloque no lineal para poder obtener al modelo linealizado. El FIT para el bloque no lineal inverso fue de 95.18%. Al implementar el MPC se obtiene un seguimiento óptimo de la variable de salida tanto para grandes variaciones de pH como para disturbios del caudal ácido usado, además, debe resaltarse que el MPC hace una optimización de la variable manipulable, optimizando de ese modo la energía de la que se dispone, a diferencia de un control PID, con el cual se hace la comparación. Se concluye que el sistema de control no tiene una dependencia directa del modelo Wiener identificado, debido a que los pesos obtenidos para el bloque no lineal son totalmente independientes del modelo no lineal inverso, por ello, la atención debe estar centrada en identificar correctamente este último.
Link to repository: https://hdl.handle.net/11042/5205
Discipline: Ingeniería Mecánico-Eléctrica
Grade or title grantor: Universidad de Piura. Facultad de Ingeniería
Grade or title: Bachiller en Ingeniería Mecánico-Eléctrica
Register date: 18-Oct-2021
This item is licensed under a Creative Commons License