Bibliographic citations
Galindo, J., Jordan, E. (2024). Evaluación del comportamiento mecánico y desempeño de la mezcla asfáltica en caliente diseñada por la metodología Marshall adicionando fibras de bambú, por medio del módulo resiliente en la Av. Carapongo, Distrito de Lurigancho-Lima [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/674609
Galindo, J., Jordan, E. Evaluación del comportamiento mecánico y desempeño de la mezcla asfáltica en caliente diseñada por la metodología Marshall adicionando fibras de bambú, por medio del módulo resiliente en la Av. Carapongo, Distrito de Lurigancho-Lima [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/674609
@misc{renati/419400,
title = "Evaluación del comportamiento mecánico y desempeño de la mezcla asfáltica en caliente diseñada por la metodología Marshall adicionando fibras de bambú, por medio del módulo resiliente en la Av. Carapongo, Distrito de Lurigancho-Lima",
author = "Jordan Tapia, Estefani Isabel",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
The problem that this project addresses refers to the constant deterioration experienced by the flexible pavement in the area of Carapongo, Lima. This pavement presents important failures such as cracks, fissures, permanent deformations, etc. For this reason, the need to improve its condition is generated, resorting to modern and innovative technologies applicable to the pavement, particularly in this research to the asphalt layer, presenting an innovative and more durable alternative. The work focuses on proposing a hot mix asphalt design with the addition of bamboo fibers. The latter is a natural and sustainable material that ensures the durability of the mixture. The research shows that incorporating bamboo fibers into hot asphalt mixes provides resistance essentially through traction, thus characterizing it as an addition that improves the mechanical behavior of asphalt concrete, resulting in resistance values of up to 800 MPa and modulus E of up to 43GPa. These aggregates came from the Gloria quarry, in Lima. In the first stage, the Marshall method was used, developing two asphalt mixtures; conventional asphalt mixtures and other asphalt mixtures with the addition of bamboo fibers, dosed in proportions of 0.4%, 0.6% and 0.8% of the weight of the asphalt mixture. Referring to the Marshall, the samples were analyzed in terms of stability, flow, voids, stiffness index, VMA. Complementing this stage, the aggregates were initially analyzed; which went through quality control for absorption, for adhesiveness: Riedel weber, striping adhesion. Defined the Marshal design, which involves the best dosage condition of bamboo fibers. In a second stage, the mixture was evaluated for performance in a laboratory specialized in the resilient modulus parameter, examining the resilient structural contribution with and without the inclusion of bamboo fibers. The results of this research project showed that, by incorporating bamboo fibers, the mechanical properties of the mixture show improvements, the stability of the mixture increases, the Marshall rigidity index increases, and flow, voids and VMA improve. Likewise, once the resilient modulus tests have been completed, the resilient modulus of the hot asphalt mixture with fibers increases in the optimal content of bamboo fibers found by 0.4%, with which the proposed asphalt mixture will have a greater capacity to distribute the load, better resilient behavior and improving its performance
This item is licensed under a Creative Commons License