Bibliographic citations
Colmenares, I., Chavez, L. (2024). Diseño y simulación de máquina clasificadora de residuos reciclables (cartón, metal, plástico y vidrio) usando inteligencia artificial y robot delta en la provincia de Cajamarca [Trabajo de suficiencia profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/674489
Colmenares, I., Chavez, L. Diseño y simulación de máquina clasificadora de residuos reciclables (cartón, metal, plástico y vidrio) usando inteligencia artificial y robot delta en la provincia de Cajamarca [Trabajo de suficiencia profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/674489
@misc{renati/419138,
title = "Diseño y simulación de máquina clasificadora de residuos reciclables (cartón, metal, plástico y vidrio) usando inteligencia artificial y robot delta en la provincia de Cajamarca",
author = "Chavez Vasquez, Luisa Posheyla",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
The present study focuses on the design and simulation of a robotic system for the efficient classification of recyclable waste, specifically metal, plastic, cardboard, and glass, to streamline the recycling process in the city of Cajamarca. To achieve this objective, the process was configured and simulated using the CoppeliaSim software, using a delta robot model IRB360, proximity sensors, conveyor belts, and a linear camera. CoppeliaSim facilitates integration with Python through its API, allowing connection with a pre-trained model in Spyder, based on the FOCUS-RCNet lightweight network architecture. 1604 images were used for network training and 400 for validation. The analysis and discussion of the results were based on the simulation of the complete process in CoppeliaSim, the number of objects classified in a given time, and the accuracy in the classification of recyclable objects using artificial intelligence tools. In conclusion, this study shows that the combination of innovative technologies such as delta robots and artificial intelligence can significantly improve recycling efficiency. This translates into a reduction in working hours and classification errors, which represents an important advance for sustainable waste management in the city of Cajamarca and possibly in other similar contexts.
This item is licensed under a Creative Commons License