Bibliographic citations
Hidalgo, B., Chelin, O. (2023). Aplicación de técnicas de análisis multivariado y aprendizaje automático para reducir la variabilidad en la estimación de la densidad para la evaluación de recursos mineros en una mina mecanizada subterránea [Trabajo de suficiencia profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/671242
Hidalgo, B., Chelin, O. Aplicación de técnicas de análisis multivariado y aprendizaje automático para reducir la variabilidad en la estimación de la densidad para la evaluación de recursos mineros en una mina mecanizada subterránea [Trabajo de suficiencia profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/671242
@misc{renati/411931,
title = "Aplicación de técnicas de análisis multivariado y aprendizaje automático para reducir la variabilidad en la estimación de la densidad para la evaluación de recursos mineros en una mina mecanizada subterránea",
author = "Chelin Martinez, Odalis Pierina",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
The estimation of mineral resources in Peruvian mining is one of the processes that has evolved over the years, however, currently there are still difficulties with respect to specifying the density, quantity, quality, and type of rock. and exact location of the mineralized bodies in the rock mass, as well as other significant aspects for decision-making based on the possibility of commercial exploitation of the estimated mineral. Consequently, one of the greatest challenges during this process is uncertainty, since it can occur at the geological, operational, and even criteria and understanding of the values obtained, thus increasing the gap between the exact data and that obtained after endless simulations, consequently, it has become increasingly difficult to carry out exploration work for new mineral deposits, the discoveries of mining deposits, the future work that involves their exploitation and the economic income that they represent unlike the rest of sectors at the national level. Likewise, given that the estimation stage is essential to specify the degree of feasibility of a mining project, it is important to mention that new techniques, methods and technologies are currently being developed that make estimates increasingly more accurate, for example Of this, it is artificial intelligence, machine learning, deep's, among other techniques that have allowed estimates of mineralized bodies to have less uncertainty and be more reliable. For all the above, the main objective of this research is to use a statistical method in combination with machine learning to predict density in order to generate more reliable block models and reduce uncertainty.
This item is licensed under a Creative Commons License