Bibliographic citations
Gutiérrez, A., López, G. (2023). Diseño de software para la predicción de ventas B2C para la modalidad de pregrado tradicional en la UPC usando machine learning y python [Trabajo de suficiencia profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/670381
Gutiérrez, A., López, G. Diseño de software para la predicción de ventas B2C para la modalidad de pregrado tradicional en la UPC usando machine learning y python [Trabajo de suficiencia profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/670381
@misc{renati/410127,
title = "Diseño de software para la predicción de ventas B2C para la modalidad de pregrado tradicional en la UPC usando machine learning y python",
author = "López Abarca, Gianfranco Raúl",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
Over the past few years, technology, business intelligence, data science, and processing languages have gained increasing prominence in businesses. Similarly, long before the advent of digital transformation in companies, they have been compelled to process ever-larger quantities of data, which has generated the need to mine, process, and transform data effectively and efficiently. Through data storytelling, companies can devise new strategies supported by their own information. The challenges that many companies face are related to their ability to predict sales. They seek this prediction to be dynamic and have an acceptable margin of error, as it can trigger investments, employment levels, advertising strategies, workforce, customer communication, and other critical business features. Therefore, empirical, manual, or expert judgment-based practices are becoming obsolete with the advancement of new technologies.The current project aims to integrate business intelligence tools for data processing with machine learning intelligence, which, through programming in Python, will allow users to generate business-to-client sales predictions for the traditional undergraduate mode at the Universidad Peruana de Ciencias Aplicadas. This prediction software will have an 85% reliability and can be visualized through an interface.
This item is licensed under a Creative Commons License