Bibliographic citations
Schultz, D., Ruiz, P. (2023). Propuesta de posedición completa de la traducción automática de una guía informativa del inglés al español [Trabajo de Suficiencia Profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/669805
Schultz, D., Ruiz, P. Propuesta de posedición completa de la traducción automática de una guía informativa del inglés al español [Trabajo de Suficiencia Profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/669805
@misc{renati/408704,
title = "Propuesta de posedición completa de la traducción automática de una guía informativa del inglés al español",
author = "Ruiz Gomez, Piero Giordano",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
Today, machine translation has become a widely used tool in translation processes, helping revolutionize methods to overcome language barriers in an increasingly globalized and digitized world. This technological advancement has transformed the translation industry and has significantly influenced the accessibility of global information. Full machine translation (MT) post-editing, in particular, has become a critical topic of interest, as it seeks to accurately refine and adapt machine translations, ensuring consistency, fluency, and fidelity to the original meaning. However, one of the tasks of the post-editor is to adapt the language used to express a text according to the needs of the client requesting the translation. In this sense, this research proposes the full post-editing of an informative guide initially created in English for parents of victims (or potential victims) of commercial child sexual exploitation in the USA in order to use the contents of the guide in an awareness campaign in Peru aimed at a broader target audience: the translation will have to be addressed not only to parents or relatives but also to teachers. To this end, we will analyze the errors found at the lexical-semantic, morphosyntactic, and stylistic-pragmatic levels in the MT generated by the neural machine translation engine (TAN) DeepL, comparing this version with our post-editing. Finally, we will present the argumentation behind the changes made during the post-editing of the text.
This item is licensed under a Creative Commons License