Citas bibligráficas
Bravo, A., Chacón, V., Flores, M., Mamani, M., Toranzo, M. (2021). Aplicación de ciencia de datos para incrementar la efectividad del número de operaciones de la base de clientes tácticos de Mibanco - Agencia Zárate [Trabajo de investigación, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/658702
Bravo, A., Chacón, V., Flores, M., Mamani, M., Toranzo, M. Aplicación de ciencia de datos para incrementar la efectividad del número de operaciones de la base de clientes tácticos de Mibanco - Agencia Zárate [Trabajo de investigación]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/658702
@misc{renati/398204,
title = "Aplicación de ciencia de datos para incrementar la efectividad del número de operaciones de la base de clientes tácticos de Mibanco - Agencia Zárate",
author = "Toranzo Pellanne, María Pía",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
The present research work seeks to analyze new strategies to increase the level of effectiveness of the number of operations of the tactical base of the clients of the Zarate agency of Mibanco located in the district of San Juan de Lurigancho, based on the commercial segmentation of the client. The data science research methodology consists of 10 stages, from data comprehension to feedback, an analytical model of predictive character will be applied, the historical information of Mibanco is analyzed and with it the problem of the low effectiveness of the tactical base of the Zarate agency is identified. Next, the possible solutions based on the data science model and the hypothesis are presented. Also, the EDA analysis is performed for the understanding and preparation of the data through visualizations and the tools that will be used for the project are described. A data architecture is established based on the current functionality and structure of Mibanco. Likewise, the Supervised Learning data science technique, a Classification model based on the Decision Tree algorithm, is used. Additionally, the results of the data science model are shown, based on finding the success formula to find the ideal profiles of the pre-approved customers of the customer base. Finally, the strategies for the implementation of the data science model in Mibanco were established.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons