Bibliographic citations
Penadillo, C., (2021). Aplicación de técnicas de análisis de regresión y aprendizaje automático para la estimación de sobre dilución en el método de Sub Level Stoping - Compañía Minera Condestable [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/655994
Penadillo, C., Aplicación de técnicas de análisis de regresión y aprendizaje automático para la estimación de sobre dilución en el método de Sub Level Stoping - Compañía Minera Condestable [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2021. http://hdl.handle.net/10757/655994
@misc{renati/395556,
title = "Aplicación de técnicas de análisis de regresión y aprendizaje automático para la estimación de sobre dilución en el método de Sub Level Stoping - Compañía Minera Condestable",
author = "Penadillo Palomino, Cristina Tessa",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2021"
}
This research work aims to apply Regression Analysis and Machine Learning (ML) techniques to improve the results of estimating over dilution in stopes mined by Sub Level Stoping (SLS) method at Compania Minera Condestable (CMC) through the generation of regression equations and code in Python language for ML techniques. For the estimation of over dilution, the reconciliations of stopes mined with the SLS method for the period 2017-2019 were analysed with the application of the techniques: Multiple Linear Regression Analysis (MLRA), Multiple Non-linear Regression Analysis (MLNRA) and Machine Learning (ML) methods such as Support Vector Machine (SVM) and Random Forests (RF), which allowed comparisons of the results at predictive and technological level with the O'Hara methodology currently applied at CMC for the estimation of over dilution of SLS stopes. The application of the afore mentioned techniques involved operational variables such as: level, dip, density, burden, spacing, height, length, width, RQD, RMR and tonne per metre drilling (TMP) ratio of the evaluated stopes, while the objective or dependent variable was over dilution. This initially identified that the ARLM and ARNM regression techniques improved O'Hara's R2 determination coefficient by 5.5% and 4.4%. Then, with the application of machine learning tools it was identified that both techniques (SVM and RF) achieved the improvement by 0.3% and 18.5% respectively. This resulted in a reduction of the estimated cost difference obtained with the O'Hara methodology related to the additional cost of loading and transporting broken stock from the dilution.
This item is licensed under a Creative Commons License