Bibliographic citations
Espinal, L., Ibáñez, C., Moyano, M. (2020). Propuesta de un Modelo Predictivo para Realizar un Control y Supervisión más Eficiente de las Prestaciones de Servicios de Salud en una Aseguradora Pública de Salud [Trabajo de investigación, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/652194
Espinal, L., Ibáñez, C., Moyano, M. Propuesta de un Modelo Predictivo para Realizar un Control y Supervisión más Eficiente de las Prestaciones de Servicios de Salud en una Aseguradora Pública de Salud [Trabajo de investigación]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2020. http://hdl.handle.net/10757/652194
@mastersthesis{renati/390613,
title = "Propuesta de un Modelo Predictivo para Realizar un Control y Supervisión más Eficiente de las Prestaciones de Servicios de Salud en una Aseguradora Pública de Salud",
author = "Moyano Melo, Manuel Alejandro Javier Armando",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2020"
}
Access to a decent health system is one of the fundamental rights of every person, in Peru great efforts have been made to improve the quality of health systems, it is a challenge for the bicentennial to provide quality health assurance that can reach all Peruvians. This objective faces great challenges since there are deficiencies in the processes of the institutions that provide health services, with the Public Health Insurer being one of the main actors in health insurance in Peru. Our research has focused on the Automatic Evaluation (EA) process, which aims to assess the validity of the health care provided by the Health Services Provider Institutions (IPRESS) affiliated with the Public Health Insurer. During the years 2017 and 2018 it was detected that 3.82% and 1.85% of the total health care presented irregularities. Studies done worldwide show that the level of irregularities in similar entities is between 3% and 10%, so there is the possibility of increasing the ability to detect irregularities in the aforementioned insurer. Through our research we have identified that by using predictive models constructed through data analytics in the Automatic Evaluation (EA) process, specifically at the stage called Electronic Medical Supervision (SME), it is posible to increase the level of irregularity detection, for this it is necessary to apply the CRISP-DM methodology and the WEKA software.
This item is licensed under a Creative Commons License