Bibliographic citations
Díaz, A., Polo, J. (2019). Evaluación del nivel de desempeño sísmico del Colegio José Faustino Sánchez Carrión (GUE) de Trujillo aplicando el análisis dinámico incremental [Tesis, Universidad Privada Antenor Orrego - UPAO]. https://hdl.handle.net/20.500.12759/5650
Díaz, A., Polo, J. Evaluación del nivel de desempeño sísmico del Colegio José Faustino Sánchez Carrión (GUE) de Trujillo aplicando el análisis dinámico incremental [Tesis]. : Universidad Privada Antenor Orrego - UPAO; 2019. https://hdl.handle.net/20.500.12759/5650
@misc{renati/371115,
title = "Evaluación del nivel de desempeño sísmico del Colegio José Faustino Sánchez Carrión (GUE) de Trujillo aplicando el análisis dinámico incremental",
author = "Polo Nontol, Jhoan William",
publisher = "Universidad Privada Antenor Orrego - UPAO",
year = "2019"
}
This research paper evaluates the level of seismic performance of the “José Faustino Sánchez Carrión School (GUE) of Trujillo”, it should be mentioned that until now it is the only Great School Unit that has La Libertad with a total area of 57,202.80m ^ 2. The building was initially built in 1954, but currently it has five modules rebuilt and remodeled in 2012, it is considered an “Essential Building” according to Art. 10 (Building Category) of the Technical Standard for Seismic Resistant Design E.0.30. In the following investigation, the “Secondary Education” module consisting of six pavilions has been evaluated, highlighting that only two pavilions were evaluated because the four missing pavilions are symmetrical to them, which are: Pavilion A built with three floors consisting of 3,11,19 classrooms on the first, second and third floor respectively with a roofed area of the first two typical floors of 170.23m ^ 2 and the roof of 128.29m ^ 2, in addition to pavilion B consisting of Classrooms 1 and 2, 9 and 10, 17 and 18 on the first, second and third floors respectively with a roofed area of the first two typical floors of 105.64m ^ 2 and the roof of 83.01m ^ 2 for classrooms. It was very important for this investigation to use the ETABS 2016 v2.1 software, with which the two pavilions “A” and “B” were modeled in 3D, taking as a guide the details of plans of “Structures” (Foundation and slab lightened) and “Architecture” of the two buildings mentioned, with the help of the AUTOCAD 2018 software, after finishing the data entry, material properties, load combinations, etc. and the correct modeling, later rigid arms and “Fiber” plastic signs were assigned to the columns and beams, finally a discretization is made by means of a gridded grid by means of sheets to the lightened plates and slabs so that the program analyzes it by means of the “Finite Elements” method, and thus the Incremental Dynamic Analysis (IDA) is applied in order to find the level of seismic performance of the structure using the proposal of the SEAOC-VISION 2000. Later we use the Dynamic Incremental Analysis (IDA), in which we use the incremental Time-History analysis, considering the dynamic properties of the materials and structural elements, being necessary to use the method of “RITZ” (Load Dependent Ritz Vectors) or “ exact vectors ”and also the“ EIGEN ”or“ own vectors ”method, where unlike this previous one, it uses more ways of vibrating to reach 90% of participatory mass in each analysis direction“ X ”and“ Y ”, But seismic analysis effects is more accurate, direct and efficient. In our case, we use the RITZ method to perform the incremental Time-History analysis using large-scale scaled seismic records of Peru subjected to gravity accelerations (g) of 1g, 2g, 4g, 6g, 8g and 10g in order to obtain our IDA curves, maximum mezzanine drifts, displacements, basal shear and determine the level of seismic performance of our structures “A“ and B “and the“ EIGEN “method we use for dynamic analysis considering 3 ways of vibrating per floor. Finally, we determine several Basic Reduction Coefficients of the “Ro” Seismic Forces, for each “x” and “y” direction, using the ATC-40 and ATC-19 proposals conveniently, finding “much lower” and “more Ro results. real “compared to the current standard E.0.30-2018 that classifies our two structures as“ Structural Walls “with“ Ro = 6 “, so thanks to this research, future engineers could use this thesis as a basis for their Studies and calculations are much closer to a more real and reliable Ro value for your next structural designs. Concluding that the structures “A” and “B” analyzed, comply with a performance level of “Life Security” and a “State limit of service” for its occupants, since their maximum mezzanine drifts do not exceed the drift ranges limit established by SEAOC-VISION2000 and ATC 40, then we deduce that a future repair would not be necessary, because both structures would have a good non-linear behavior, therefore, we are sure structures “A” and “B” will comply with its function of safeguarding the life of its users if they experience earthquakes of great magnitude such as those used in Dynamic Incremental Analysis (IDA).
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.