Bibliographic citations
Flores, E., (2016). Un Método numérico para obtener matrices no negativas simétricas basado en una mejora de las condiciones de suleimanova [Tesis, Universidad Nacional del Callao]. https://hdl.handle.net/20.500.12952/1590
Flores, E., Un Método numérico para obtener matrices no negativas simétricas basado en una mejora de las condiciones de suleimanova [Tesis]. PE: Universidad Nacional del Callao; 2016. https://hdl.handle.net/20.500.12952/1590
@misc{renati/335766,
title = "Un Método numérico para obtener matrices no negativas simétricas basado en una mejora de las condiciones de suleimanova",
author = "Flores Montoya, Edwin Antero",
publisher = "Universidad Nacional del Callao",
year = "2016"
}
We present a numerical method to solve two types of inverse problems of real eigenvalues, one for nonnegative matrices RNIEP and one for symmetric matrices SNIEP nonnegative. First we construct a nonnegative 2 X 2 matrix and a symmetric nonnegative matrix. To do this we will discuss the conditions for two eigenvalues are the spectrum of said matrix, discussion we reflect on two slogans. Then we built a matrix of order n X n, for this construction we use the theorem Nazari and Sherafat, and other results, every step we look matrices with desired eigenvalues and a desired structure, and then combine them to solve RNIEP or SNIEP, this construction we present our numerical method then give some numerical examples. It will be discussed later as the construction 2 X 2 can be applied to inverse eigenvalue problems for stochastic matrices.
This item is licensed under a Creative Commons License