Look-up in Google Scholar
Title: Data augmentation using generative adversarial network for gastrointestinal parasite microscopy image classification
Advisor(s): Castro Gutierrez, Eveling Gloria
OCDE field: https://purl.org/pe-repo/ocde/ford#1.02.01
Issue Date: 2021
Institution: Universidad Nacional de San Agustín de Arequipa
Abstract: Las enfermedades parasitarias gastrointestinales representan un problema latente en los países en desarrollo; es necesario crear herramientas de apoyo para el diagnóstico médico de estas enfermedades, se requiere automatizar tareas como la clasificación de muestras de los parásitos causantes obtenidas a través del microscopio utilizando métodos como el aprendizaje profundo. Sin embargo, estos métodos requieren grandes cantidades de datos. Actualmente, la recolección de estas imágenes representa un procedimiento complejo, importante consumo de recursos y largos períodos. Por tanto, es necesario proponer una solución computacional a este problema. En este trabajo se presenta un enfoque para generar conjuntos de imágenes sintéticas de 8 especies de parásitos, utilizando Redes Generativas Adversarias Convolucionales Profundas (DCGAN). Además, buscando mejores resultados, se aplicaron técnicas de mejora de imagen. Estos conjuntos de datos sintéticos (SD) fueron evaluados en una serie de combinaciones con los conjuntos de datos reales (RD) utilizando la tarea de clasificación, donde la mayor exactitud se obtuvo con el modelo Resnet50 pre-entrenado (99,2%), mostrando que el aumento de la RD con SD obtenido de DCGAN ayuda a lograr una mayor exactitud.
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad Nacional de San Agustín de Arequipa.Facultad de Ingeniería de Producción y Servicios
Grade or title: Ingenieras de Sistemas
Juror: Aedo Lopez, Marco Wilfredo; Laura Ochoa, Leticia Marisol; Castro Gutierrez, Eveling Gloria
Register date: 18-Oct-2021



This item is licensed under a Creative Commons License Creative Commons