Bibliographic citations
Sucari, R., (2018). Comparación del análisis discriminante no métrico, árboles de clasificación Chaid y la regresión logística multinormal [Tesis, Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/3261
Sucari, R., Comparación del análisis discriminante no métrico, árboles de clasificación Chaid y la regresión logística multinormal [Tesis]. : Universidad Nacional Agraria La Molina; 2018. https://hdl.handle.net/20.500.12996/3261
@mastersthesis{renati/246432,
title = "Comparación del análisis discriminante no métrico, árboles de clasificación Chaid y la regresión logística multinormal",
author = "Sucari Sucari, Ruben Elvis",
publisher = "Universidad Nacional Agraria La Molina",
year = "2018"
}
In this thesis a method was developed called Non-Metric Discriminant Analysis, and its performance was compared with the Classification Tree CHAID and Multinomial Logistic Regression, which are also non-parametric methods. This performance comparison was evaluated using Cross Validation. To perform the comparative study of these classifiers we used data sets that are provided by the University of California Irving (UCI).It is concluded that the Multinomial Logistic Regression performs better in the classification of data taking into account the average classification rate and processing time
This item is licensed under a Creative Commons License